Babylon Health, London, UK.
AMIA Annu Symp Proc. 2022 Feb 21;2021:881-890. eCollection 2021.
Clinical notes are an efficient way to record patient information but are notoriously hard to decipher for non-experts. Automatically simplifying medical text can empower patients with valuable information about their health, while saving clinicians time. We present a novel approach to automated simplification of medical text based on word frequencies and language modelling, grounded on medical ontologies enriched with layman terms. We release a new dataset of pairs of publicly available medical sentences and a version of them simplified by clinicians. Also, we define a novel text simplification metric and evaluation framework, which we use to conduct a large-scale human evaluation of our method against the state of the art. Our method based on a language model trained on medical forum data generates simpler sentences while preserving both grammar and the original meaning, surpassing the current state of the art.
临床笔记是记录患者信息的有效方式,但对于非专业人员来说,这些笔记通常很难理解。自动简化医学文本可以为患者提供有关其健康状况的有价值信息,同时为临床医生节省时间。我们提出了一种基于词汇频率和语言模型的新型医学文本自动简化方法,该方法基于医学本体论和外行人术语。我们发布了一个新的数据集,其中包含一对公开可用的医学句子及其由临床医生简化的版本。此外,我们还定义了一种新的文本简化度量和评估框架,我们使用该框架对我们的方法与现有技术进行了大规模的人工评估。我们的方法基于在医学论坛数据上训练的语言模型生成更简单的句子,同时保留语法和原始含义,超过了现有技术的水平。