Tran Hieu, Yao Zonghai, Jang Won Seok, Sultana Sharmin, Chang Allen, Zhang Yuan, Yu Hong
Center for Healthcare Organization and Implementation Research, VA Bedford Health Care, MA, USA.
Manning College of Information and Computer Sciences, UMass Amherst, MA, USA.
medRxiv. 2025 Jul 11:2025.07.09.25331239. doi: 10.1101/2025.07.09.25331239.
Generative AI has demonstrated strong potential in healthcare, from clinical decision support to patient-facing chatbots that improve outcomes. A critical challenge for deployment is effective human-AI communication, where content must be both personalized and understandable. We introduce MedReadCtrl, a readability-controlled instruction tuning framework that enables LLMs to adjust output complexity without compromising meaning. Evaluations of nine datasets and three tasks across medical and general domains show that MedReadCtrl achieves significantly lower readability instruction-following errors than GPT-4 (e.g., 1.39 vs. 1.59 on ReadMe, p<0.001) and delivers substantial gains on unseen clinical tasks (e.g., +14.7 ROUGE-L, +6.18 SARI on MTSamples). Experts consistently preferred MedReadCtrl (71.7% vs. 23.3%), especially at low literacy levels. These gains reflect MedReadCtrl's ability to restructure clinical content into accessible, readability-aligned language while preserving medical intent, offering a scalable solution to support patient education and expand equitable access to AI-enabled care.
生成式人工智能在医疗保健领域已展现出强大潜力,从临床决策支持到改善治疗效果的面向患者的聊天机器人。部署过程中的一个关键挑战是有效的人机人工智能通信,其中内容必须既个性化又易于理解。我们引入了MedReadCtrl,这是一个可读性控制的指令调整框架,可使大型语言模型在不影响含义的情况下调整输出复杂度。对九个数据集以及医疗和通用领域的三项任务的评估表明,MedReadCtrl在遵循可读性指令方面的错误率明显低于GPT-4(例如,在ReadMe上分别为1.39和1.59,p<0.001),并且在未见过的临床任务上有显著提升(例如,在MTSamples上,ROUGE-L提高了14.7,SARI提高了6.18)。专家们一直更青睐MedReadCtrl(71.7%对23.3%),尤其是在低识字水平的情况下。这些提升反映了MedReadCtrl有能力将临床内容重新组织成易于理解、与可读性相符的语言,同时保留医学意图,为支持患者教育和扩大公平获取人工智能辅助护理提供了一个可扩展的解决方案。
Proc Natl Acad Sci U S A. 2025-7
J Med Internet Res. 2024-12-11
Front Artif Intell. 2025-4-7
J Am Med Inform Assoc. 2024-9-1
J Racial Ethn Health Disparities. 2025-4-3
J Med Internet Res. 2025-2-7
NPJ Digit Med. 2024-11-20
Front Med (Lausanne). 2024-10-29
J Am Med Inform Assoc. 2024-9-1
iScience. 2024-4-23
Transl Androl Urol. 2024-2-29