文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

MedReadCtrl:通过可读性控制的指令学习实现医学文本生成个性化

MedReadCtrl: Personalizing medical text generation with readability-controlled instruction learning.

作者信息

Tran Hieu, Yao Zonghai, Jang Won Seok, Sultana Sharmin, Chang Allen, Zhang Yuan, Yu Hong

机构信息

Center for Healthcare Organization and Implementation Research, VA Bedford Health Care, MA, USA.

Manning College of Information and Computer Sciences, UMass Amherst, MA, USA.

出版信息

medRxiv. 2025 Jul 11:2025.07.09.25331239. doi: 10.1101/2025.07.09.25331239.


DOI:10.1101/2025.07.09.25331239
PMID:40672473
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12265760/
Abstract

Generative AI has demonstrated strong potential in healthcare, from clinical decision support to patient-facing chatbots that improve outcomes. A critical challenge for deployment is effective human-AI communication, where content must be both personalized and understandable. We introduce MedReadCtrl, a readability-controlled instruction tuning framework that enables LLMs to adjust output complexity without compromising meaning. Evaluations of nine datasets and three tasks across medical and general domains show that MedReadCtrl achieves significantly lower readability instruction-following errors than GPT-4 (e.g., 1.39 vs. 1.59 on ReadMe, p<0.001) and delivers substantial gains on unseen clinical tasks (e.g., +14.7 ROUGE-L, +6.18 SARI on MTSamples). Experts consistently preferred MedReadCtrl (71.7% vs. 23.3%), especially at low literacy levels. These gains reflect MedReadCtrl's ability to restructure clinical content into accessible, readability-aligned language while preserving medical intent, offering a scalable solution to support patient education and expand equitable access to AI-enabled care.

摘要

生成式人工智能在医疗保健领域已展现出强大潜力,从临床决策支持到改善治疗效果的面向患者的聊天机器人。部署过程中的一个关键挑战是有效的人机人工智能通信,其中内容必须既个性化又易于理解。我们引入了MedReadCtrl,这是一个可读性控制的指令调整框架,可使大型语言模型在不影响含义的情况下调整输出复杂度。对九个数据集以及医疗和通用领域的三项任务的评估表明,MedReadCtrl在遵循可读性指令方面的错误率明显低于GPT-4(例如,在ReadMe上分别为1.39和1.59,p<0.001),并且在未见过的临床任务上有显著提升(例如,在MTSamples上,ROUGE-L提高了14.7,SARI提高了6.18)。专家们一直更青睐MedReadCtrl(71.7%对23.3%),尤其是在低识字水平的情况下。这些提升反映了MedReadCtrl有能力将临床内容重新组织成易于理解、与可读性相符的语言,同时保留医学意图,为支持患者教育和扩大公平获取人工智能辅助护理提供了一个可扩展的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ac/12265760/047c0887153f/nihpp-2025.07.09.25331239v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ac/12265760/a238b9401ebf/nihpp-2025.07.09.25331239v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ac/12265760/9ea91eba9724/nihpp-2025.07.09.25331239v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ac/12265760/047c0887153f/nihpp-2025.07.09.25331239v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ac/12265760/a238b9401ebf/nihpp-2025.07.09.25331239v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ac/12265760/9ea91eba9724/nihpp-2025.07.09.25331239v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ac/12265760/047c0887153f/nihpp-2025.07.09.25331239v1-f0003.jpg

相似文献

[1]
MedReadCtrl: Personalizing medical text generation with readability-controlled instruction learning.

medRxiv. 2025-7-11

[2]
Artificial intelligence-simplified information to advance reproductive genetic literacy and health equity.

Hum Reprod. 2025-7-22

[3]
Artificial Intelligence Shows Limited Success in Improving Readability Levels of Spanish-language Orthopaedic Patient Education Materials.

Clin Orthop Relat Res. 2025-2-11

[4]
Stench of Errors or the Shine of Potential: The Challenge of (Ir)Responsible Use of ChatGPT in Speech-Language Pathology.

Int J Lang Commun Disord. 2025

[5]
Generative AI without guardrails can harm learning: Evidence from high school mathematics.

Proc Natl Acad Sci U S A. 2025-7

[6]
Large Language Models and Empathy: Systematic Review.

J Med Internet Res. 2024-12-11

[7]
Emotional prompting amplifies disinformation generation in AI large language models.

Front Artif Intell. 2025-4-7

[8]
Enhancing the Readability of Online Patient Education Materials Using Large Language Models: Cross-Sectional Study.

J Med Internet Res. 2025-6-4

[9]
Evaluation of Large Language Models in Tailoring Educational Content for Cancer Survivors and Their Caregivers: Quality Analysis.

JMIR Cancer. 2025-4-7

[10]
BioInstruct: instruction tuning of large language models for biomedical natural language processing.

J Am Med Inform Assoc. 2024-9-1

本文引用的文献

[1]
Association Between Patient Race/Ethnicity, Health Literacy, Socio-Economic Status, and Incidence of Medication Errors: A Systematic Review.

J Racial Ethn Health Disparities. 2025-4-3

[2]
Implementing large language models in healthcare while balancing control, collaboration, costs and security.

NPJ Digit Med. 2025-3-6

[3]
Unveiling GPT-4V's hidden challenges behind high accuracy on USMLE questions: Observational Study.

J Med Internet Res. 2025-2-7

[4]
The quality and safety of using generative AI to produce patient-centred discharge instructions.

NPJ Digit Med. 2024-11-20

[5]
Large language models in patient education: a scoping review of applications in medicine.

Front Med (Lausanne). 2024-10-29

[6]
BioInstruct: instruction tuning of large language models for biomedical natural language processing.

J Am Med Inform Assoc. 2024-9-1

[7]
The application of large language models in medicine: A scoping review.

iScience. 2024-4-23

[8]
The potential for artificial intelligence to transform healthcare: perspectives from international health leaders.

NPJ Digit Med. 2024-4-9

[9]
The rise of artificial intelligence-driven health communication.

Transl Androl Urol. 2024-2-29

[10]
Reviewing the Potential Role of Artificial Intelligence in Delivering Personalized and Interactive Pain Medicine Education for Chronic Pain Patients.

J Pain Res. 2024-3-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索