IBM Research Europe, Dublin, Ireland.
University College London, UK.
AMIA Annu Symp Proc. 2022 Feb 21;2021:486-495. eCollection 2021.
Findings from randomized controlled trials (RCTs) of behaviour change interventions encode much of our knowledge on intervention efficacy under defined conditions. Predicting outcomes of novel interventions in novel conditions can be challenging, as can predicting differences in outcomes between different interventions or different conditions. To predict outcomes from RCTs, we propose a generic framework of combining the information from two sources - i) the instances (comprised of surrounding text and their numeric values) of relevant attributes, namely the intervention, setting and population characteristics of a study, and ii) abstract representation of the categories of these attributes themselves. We demonstrate that this way of encoding both the information about an attribute and its value when used as an embedding layer within a standard deep sequence modeling setup improves the outcome prediction effectiveness.
随机对照试验 (RCT) 中行为改变干预措施的结果在很大程度上编码了我们在特定条件下对干预效果的了解。预测新干预措施在新条件下的结果可能具有挑战性,就像预测不同干预措施或不同条件下的结果差异一样。为了从 RCT 中预测结果,我们提出了一个通用框架,用于结合来自两个来源的信息:i)相关属性的实例(由研究的干预、环境和人群特征的周围文本及其数值组成),以及 ii)这些属性本身的类别抽象表示。我们证明,这种将属性的信息及其值编码为嵌入层并在标准深度序列建模设置中使用的方法可以提高结果预测的有效性。