Suppr超能文献

从 ICU 数据中学习可预测和可解释的时间序列摘要。

Learning Predictive and Interpretable Timeseries Summaries from ICU Data.

机构信息

School of Engineering and Applied Sciences, Harvard University, Cambridge, MA.

出版信息

AMIA Annu Symp Proc. 2022 Feb 21;2021:581-590. eCollection 2021.

Abstract

Machine learning models that utilize patient data across time (rather than just the most recent measurements) have increased performance for many risk stratification tasks in the intensive care unit. However, many of these models and their learned representations are complex and therefore difficult for clinicians to interpret, creating challenges for validation. Our work proposes a new procedure to learn summaries of clinical timeseries that are both predictive and easily understood by humans. Specifically, our summaries consist of simple and intuitive functions of clinical data (e.g. "falling mean arterial pressure"). Our learned summaries outperform traditional interpretable model classes and achieve performance comparable to state-of-the-art deep learning models on an in-hospital mortality classification task.

摘要

利用患者跨时间数据(而不仅仅是最近的测量值)的机器学习模型提高了重症监护病房中许多风险分层任务的性能。然而,这些模型和它们的学习表示中的许多都是复杂的,因此对临床医生来说难以解释,这给验证带来了挑战。我们的工作提出了一种新的方法来学习临床时间序列的摘要,这些摘要既具有预测性,又易于人类理解。具体来说,我们的摘要由临床数据的简单直观函数组成(例如,“下降的平均动脉压”)。在院内死亡率分类任务中,我们学到的摘要比传统的可解释模型类表现更好,性能可与最先进的深度学习模型相媲美。

相似文献

本文引用的文献

4

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验