Suppr超能文献

抗冠状病毒优化算法

Anti-coronavirus optimization algorithm.

作者信息

Emami Hojjat

机构信息

Department of Computer Engineering, University of Bonab, Bonab, Iran.

出版信息

Soft comput. 2022;26(11):4991-5023. doi: 10.1007/s00500-022-06903-5. Epub 2022 Mar 14.

Abstract

This paper introduces a new swarm intelligence strategy, anti-coronavirus optimization (ACVO) algorithm. This algorithm is a multi-agent strategy, in which each agent is a person that tries to stay healthy and slow down the spread of COVID-19 by observing the containment protocols. The algorithm composed of three main steps: social distancing, quarantine, and isolation. In the social distancing phase, the algorithm attempts to maintain a safe physical distance between people and limit close contacts. In the quarantine phase, the algorithm quarantines the suspected people to prevent the spread of disease. Some people who have not followed the health protocols and infected by the virus should be taken care of to get a full recovery. In the isolation phase, the algorithm cared for the infected people to recover their health. The algorithm iteratively applies these operators on the population to find the fittest and healthiest person. The proposed algorithm is evaluated on standard multi-variable single-objective optimization problems and compared with several counterpart algorithms. The results show the superiority of ACVO on most test problems compared with its counterparts.

摘要

本文介绍了一种新的群体智能策略——抗冠状病毒优化(ACVO)算法。该算法是一种多智能体策略,其中每个智能体代表一个试图通过遵守防控措施来保持健康并减缓新冠病毒传播的人。该算法由三个主要步骤组成:社交距离、检疫和隔离。在社交距离阶段,算法试图在人与人之间保持安全的物理距离并限制密切接触。在检疫阶段,算法对疑似人员进行隔离以防止疾病传播。对于一些未遵守健康协议且感染病毒的人,应给予照顾以使其完全康复。在隔离阶段,算法照顾感染者以使其恢复健康。该算法在群体上迭代应用这些操作符以找到最健康的人。所提出的算法在标准多变量单目标优化问题上进行了评估,并与几种同类算法进行了比较。结果表明,与同类算法相比,ACVO在大多数测试问题上具有优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19e1/8918922/1d9265e87307/500_2022_6903_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验