Suppr超能文献

一种用于全局优化的基于正弦余弦的混合非线性鲸鱼优化算法。

A Hybrid Nonlinear Whale Optimization Algorithm with Sine Cosine for Global Optimization.

作者信息

Xu Yubao, Zhang Jinzhong

机构信息

School of Electrical and Photoelectronic Engineering, West Anhui University, Lu'an 237012, China.

出版信息

Biomimetics (Basel). 2024 Oct 7;9(10):602. doi: 10.3390/biomimetics9100602.

Abstract

The whale optimization algorithm (WOA) is constructed on a whale's bubble-net scavenging pattern and emulates encompassing prey, bubble-net devouring prey, and stochastic capturing for prey to establish the global optimal values. Nevertheless, the WOA has multiple deficiencies, such as restricted precision, sluggish convergence acceleration, insufficient population variety, easy premature convergence, and restricted operational efficiency. The sine cosine algorithm (SCA) constructed on the oscillation attributes of the cosine and sine coefficients in mathematics is a stochastic optimization methodology. The SCA upgrades population variety, amplifies the search region, and accelerates international investigation and regional extraction. Therefore, a hybrid nonlinear WOA with SCA (SCWOA) is emphasized to estimate benchmark functions and engineering designs, and the ultimate intention is to investigate reasonable solutions. Compared with other algorithms, such as BA, CapSA, MFO, MVO, SAO, MDWA, and WOA, SCWOA exemplifies a superior convergence effectiveness and greater computation profitability. The experimental results emphasize that the SCWOA not only integrates investigation and extraction to avoid premature convergence and realize the most appropriate solution but also exhibits superiority and practicability to locate greater computation precision and faster convergence speed.

摘要

鲸鱼优化算法(WOA)基于鲸鱼的气泡网觅食模式构建,模拟包围猎物、气泡网吞噬猎物以及随机捕获猎物的过程来确定全局最优值。然而,WOA存在多种缺陷,如精度受限、收敛加速缓慢、种群多样性不足、易早熟收敛以及运算效率受限等。基于数学中余弦和正弦系数的振荡特性构建的正弦余弦算法(SCA)是一种随机优化方法。SCA提升了种群多样性,扩大了搜索区域,并加速了全局搜索和局部挖掘。因此,强调一种结合SCA的混合非线性WOA(SCWOA)来估计基准函数和进行工程设计,最终目的是探索合理的解决方案。与其他算法,如BA、CapSA、MFO、MVO、SAO、MDWA和WOA相比,SCWOA具有更高的收敛效率和更大的计算效益。实验结果表明,SCWOA不仅融合了搜索和挖掘以避免早熟收敛并实现最优解,还在定位更高计算精度和更快收敛速度方面展现出优越性和实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a549/11505164/5027fb2038d2/biomimetics-09-00602-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验