Suppr超能文献

基于暹罗网络的通用跟踪器,一种用于动物行为跟踪的无模型深度学习工具。

Siamese Network-Based All-Purpose-Tracker, a Model-Free Deep Learning Tool for Animal Behavioral Tracking.

作者信息

Su Lihui, Wang Wenyao, Sheng Kaiwen, Liu Xiaofei, Du Kai, Tian Yonghong, Ma Lei

机构信息

School of Computer Science, Peking University, Beijing, China.

Beijing Academy of Artificial Intelligence, Beijing, China.

出版信息

Front Behav Neurosci. 2022 Mar 4;16:759943. doi: 10.3389/fnbeh.2022.759943. eCollection 2022.

Abstract

Accurate tracking is the basis of behavioral analysis, an important research method in neuroscience and many other fields. However, the currently available tracking methods have limitations. Traditional computer vision methods have problems in complex environments, and deep learning methods are hard to be applied universally due to the requirement of laborious annotations. To address the trade-off between accuracy and universality, we developed an easy-to-use tracking tool, Siamese Network-based All-Purpose Tracker (SNAP-Tracker), a model-free tracking software built on the Siamese network. The pretrained Siamese network offers SNAP-Tracker a remarkable feature extraction ability to keep tracking accuracy, and the model-free design makes it usable directly before laborious annotations and network refinement. SNAP-Tracker provides a "tracking with detection" mode to track longer videos with an additional detection module. We demonstrate the stability of SNAP-Tracker through different experimental conditions and different tracking tasks. In short, SNAP-Tracker provides a general solution to behavioral tracking without compromising accuracy. For the user's convenience, we have integrated the tool into a tidy graphic user interface and opened the source code for downloading and using (https://github.com/slh0302/SNAP).

摘要

精确跟踪是行为分析的基础,行为分析是神经科学和许多其他领域的一种重要研究方法。然而,目前可用的跟踪方法存在局限性。传统的计算机视觉方法在复杂环境中存在问题,而深度学习方法由于需要大量标注而难以普遍应用。为了解决准确性和通用性之间的权衡问题,我们开发了一种易于使用的跟踪工具,即基于暹罗网络的通用跟踪器(SNAP-Tracker),这是一种基于暹罗网络构建的无模型跟踪软件。预训练的暹罗网络为SNAP-Tracker提供了卓越的特征提取能力,以保持跟踪准确性,而无模型设计使其在进行大量标注和网络优化之前即可直接使用。SNAP-Tracker提供了一种“检测跟踪”模式,通过一个额外的检测模块来跟踪更长的视频。我们通过不同的实验条件和不同的跟踪任务展示了SNAP-Tracker的稳定性。简而言之,SNAP-Tracker在不影响准确性的情况下为行为跟踪提供了一个通用解决方案。为方便用户,我们已将该工具集成到一个简洁的图形用户界面中,并开放了源代码供下载和使用(https://github.com/slh0302/SNAP)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7327/8931526/8db55728110a/fnbeh-16-759943-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验