Lin Chen Yu, Chen Hung Ju, Chan Yi Kit, Hsia Wei Ping, Huang Yu Len, Chang Chia Jen
Department of Ophthalmology, Taichung Veterans General Hospital, Taichung 407, Taiwan, China.
Department of Computer Science, Tunghai University, Taichung 407, Taiwan, China.
Int J Ophthalmol. 2024 Oct 18;17(10):1763-1771. doi: 10.18240/ijo.2024.10.01. eCollection 2024.
To develop an automated model for subfoveal choroidal thickness (SFCT) detection in optical coherence tomography (OCT) images, addressing manual fovea location and choroidal contour challenges.
Two procedures were proposed: defining the fovea and segmenting the choroid. Fovea localization from B-scan OCT image sequence with three-dimensional reconstruction (LocBscan-3D) predicted fovea location using central foveal depression features, and fovea localization from two-dimensional en-face OCT (LocEN-2D) used a mask region-based convolutional neural network (Mask R-CNN) model for optic disc detection, and determined the fovea location based on optic disc relative position. Choroid segmentation also employed Mask R-CNN.
For 53 eyes in 28 healthy subjects, LocBscan-3D's mean difference between manual and predicted fovea locations was 170.0 µm, LocEN-2D yielded 675.9 µm. LocEN-2D performed better in non-high myopia group (=0.02). SFCT measurements from Mask R-CNN aligned with manual values.
Our models accurately predict SFCT in OCT images. LocBscan-3D excels in precise fovea localization even with high myopia. LocEN-2D shows high detection rates but lower accuracy especially in the high myopia group. Combining both models offers a robust SFCT assessment approach, promising efficiency and accuracy for large-scale studies and clinical use.
开发一种用于在光学相干断层扫描(OCT)图像中检测黄斑中心凹下脉络膜厚度(SFCT)的自动化模型,以解决黄斑中心凹手动定位和脉络膜轮廓识别的难题。
提出了两个步骤:定义黄斑中心凹和分割脉络膜。利用三维重建从B扫描OCT图像序列中进行黄斑中心凹定位(LocBscan-3D),通过中央凹凹陷特征预测黄斑中心凹位置;从二维OCT en-face图像中进行黄斑中心凹定位(LocEN-2D),使用基于掩膜区域的卷积神经网络(Mask R-CNN)模型检测视盘,并根据视盘相对位置确定黄斑中心凹位置。脉络膜分割也采用Mask R-CNN。
对于28名健康受试者的53只眼睛,LocBscan-3D手动定位与预测的黄斑中心凹位置之间的平均差异为170.0μm,LocEN-2D为675.9μm。LocEN-2D在非高度近视组表现更好(=0.02)。Mask R-CNN测量的SFCT与手动测量值相符。
我们的模型能够准确预测OCT图像中的SFCT。即使在高度近视情况下,LocBscan-3D在精确的黄斑中心凹定位方面表现出色。LocEN-2D具有较高的检测率,但准确性较低,尤其是在高度近视组。将两种模型结合提供了一种可靠的SFCT评估方法,有望为大规模研究和临床应用带来效率和准确性。