文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

钼作为生物可吸收支架候选材料的体内评估。

In-vivo evaluation of molybdenum as bioabsorbable stent candidate.

作者信息

Sikora-Jasinska Malgorzata, Morath Lea M, Kwesiga Maria P, Plank Margaret E, Nelson Alexia L, Oliver Alexander A, Bocks Martin L, Guillory Roger J, Goldman Jeremy

机构信息

Department of Biomedical Engineering, Michigan Technological University, USA.

Department of Biomedical Engineering and Physiology, Mayo Clinic Graduate School of Biomedical Sciences, USA.

出版信息

Bioact Mater. 2021 Nov 18;14:262-271. doi: 10.1016/j.bioactmat.2021.11.005. eCollection 2022 Aug.


DOI:10.1016/j.bioactmat.2021.11.005
PMID:35310360
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8897701/
Abstract

Biodegradable stents have tremendous theoretical potential as an alternative to bare metal stents and drug-eluting stents for the treatment of obstructive coronary artery disease. Any bioresorbable or biodegradable scaffold material needs to possess optimal mechanical properties and uniform degradation behavior that avoids local and systemic toxicity. Recently, molybdenum (Mo) has been investigated as a potential novel biodegradable material for this purpose. With its proven moderate degradation rate and excellent mechanical properties, Mo may represent an ideal source material for clinical cardiac and vascular applications. The present study was performed to evaluate the mechanical performance of metallic Mo and the biodegradation properties . The results demonstrated favorable mechanical behavior and a uniform degradation profile as desired for a new generation ultra-thin degradable endovascular stent material. Moreover, Mo implants in mouse arteries avoided the typical cellular response that contributes to restenosis. There was minimal neointimal hyperplasia over 6 months, an absence of excessive smooth muscle cell (SMC) proliferation or inflammation near the implant, and avoidance of significant harm to regenerating endothelial cells (EC). Qualitative inspection of kidney sections showed a potentially pathological remodeling of kidney Bowman's capsule and glomeruli, indicative of impaired filtering function and development of kidney disease, although quantifications of these morphological changes were not statistically significant. Together, the results suggest that the products of Mo corrosion may exert beneficial or inert effects on the activities of inflammatory and arterial cells, while exerting potentially toxic effects in the kidneys that warrant further investigation.

摘要

作为治疗阻塞性冠状动脉疾病的裸金属支架和药物洗脱支架的替代品,可生物降解支架具有巨大的理论潜力。任何生物可吸收或可生物降解的支架材料都需要具备最佳的机械性能和均匀的降解行为,以避免局部和全身毒性。最近,钼(Mo)已被研究作为一种潜在的新型可生物降解材料用于此目的。凭借其已被证实的适度降解速率和优异的机械性能,钼可能代表临床心脏和血管应用的理想原材料。本研究旨在评估金属钼的机械性能和生物降解特性。结果表明,作为新一代超薄可降解血管内支架材料,钼具有良好的机械性能和理想的均匀降解特性。此外,钼植入小鼠动脉可避免导致再狭窄的典型细胞反应。在6个月内,内膜增生极少,植入物附近没有过度的平滑肌细胞(SMC)增殖或炎症,并且避免了对再生内皮细胞(EC)的重大损害。对肾脏切片的定性检查显示肾小囊和肾小球可能存在病理性重塑,表明过滤功能受损和肾脏疾病的发展,尽管这些形态学变化的量化在统计学上并不显著。总之,结果表明钼腐蚀产物可能对炎症细胞和动脉细胞的活动产生有益或惰性影响,而在肾脏中可能产生潜在毒性作用,这值得进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/906d/8897701/48e30ccce2d3/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/906d/8897701/b762b0d8fba7/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/906d/8897701/23aa613b0aa4/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/906d/8897701/f7979ef51c58/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/906d/8897701/df84252de6cd/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/906d/8897701/79f724023d1c/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/906d/8897701/a25b96f53f70/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/906d/8897701/4c54f4cbed87/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/906d/8897701/46fafc3a38e3/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/906d/8897701/955010a68fa5/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/906d/8897701/48e30ccce2d3/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/906d/8897701/b762b0d8fba7/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/906d/8897701/23aa613b0aa4/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/906d/8897701/f7979ef51c58/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/906d/8897701/df84252de6cd/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/906d/8897701/79f724023d1c/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/906d/8897701/a25b96f53f70/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/906d/8897701/4c54f4cbed87/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/906d/8897701/46fafc3a38e3/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/906d/8897701/955010a68fa5/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/906d/8897701/48e30ccce2d3/gr9.jpg

相似文献

[1]
In-vivo evaluation of molybdenum as bioabsorbable stent candidate.

Bioact Mater. 2021-11-18

[2]

2013-12-10

[3]
Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents.

Mater Sci Eng C Mater Biol Appl. 2015-11-1

[4]
Insights into the biocompatibility of biodegradable metallic molybdenum for cardiovascular applications-a critical review.

Front Bioeng Biotechnol. 2024-9-23

[5]
Biological response of degradation products of PEO-modified magnesium on vascular tissue cells, hemocompatibility and its influence on the inflammatory response.

Biomater Adv. 2023-11

[6]
Drug-eluting stents.

Arch Cardiol Mex. 2006

[7]
Molybdenum - A biodegradable implant material for structural applications?

Acta Biomater. 2020-3-1

[8]
Additive Manufacturing of Biodegradable Molybdenum - From Powder to Vascular Stent.

Adv Mater. 2024-8

[9]
A manufacturing and annealing protocol to develop a cold-sprayed Fe-316L stainless steel biodegradable stenting material.

Acta Biomater. 2019-8-23

[10]
Bioabsorbable Drug-Eluting Stent Versus Bare Metal Stent in Iliac Artery Evaluated by Optical Coherence Tomography: An In Vivo Study in Porcine.

Vasc Endovascular Surg. 2018-10

引用本文的文献

[1]
A novel paclitaxel eluting bioresorbable vascular stent with a super flexible stent structure and round cross section struts fabricated using 3D printing technology with a rotating platform.

Regen Biomater. 2025-7-9

[2]
Development of a Biodegradable Green Emitter Chitosan-Based OLED for Implantable Biomedical Devices.

ACS Appl Mater Interfaces. 2025-7-2

[3]
Evaluation of FeMnN alloy bioresorbable flow diverters in the rabbit elastase induced aneurysm model.

Front Bioeng Biotechnol. 2025-2-25

[4]
On the addition of Au and Pt to a Fe-Mn-Si alloy for biodegradable implants.

Heliyon. 2025-2-15

[5]
Macrophage-related inflammatory responses to degradation products of biodegradable molybdenum implants.

Mater Today Bio. 2025-1-23

[6]
Bioresorbable vascular metallic scaffolds: Current status and research trends.

Curr Opin Biomed Eng. 2022-12

[7]
Fully biodegradable hierarchically designed high-performance nanocellulose piezo-arrays.

Sci Adv. 2025-1-17

[8]
Insights into the biocompatibility of biodegradable metallic molybdenum for cardiovascular applications-a critical review.

Front Bioeng Biotechnol. 2024-9-23

[9]
Absorbable metal stents for vascular use in pediatric cardiology: progress and outlook.

Front Cardiovasc Med. 2024-7-26

[10]
Radiopaque FeMnN-Mo composite drawn filled tubing wires for braided absorbable neurovascular devices.

Bioact Mater. 2024-6-7

本文引用的文献

[1]
Biocompatibility and Degradation Behavior of Molybdenum in an In Vivo Rat Model.

Materials (Basel). 2021-12-16

[2]
Comparative outcomes of exposing human liver and kidney cell lines to tungstate and molybdate.

Toxicol Mech Methods. 2021-11

[3]
PDLLA-Zn-nitrided Fe bioresorbable scaffold with 53-μm-thick metallic struts and tunable multistage biodegradation function.

Sci Adv. 2021-6-4

[4]
Recent advances and directions in the development of bioresorbable metallic cardiovascular stents: Insights from recent human and in vivo studies.

Acta Biomater. 2021-6

[5]
Preclinical In-Vivo Evaluation and Screening of Zinc Based Degradable Metals for Endovascular Stents.

JOM (1989). 2019-4

[6]
Analysis of vascular inflammation against bioresorbable Zn-Ag based alloys.

ACS Appl Bio Mater. 2020-10-19

[7]
BIOSOLVE-IV-registry: Safety and performance of the Magmaris scaffold: 12-month outcomes of the first cohort of 1,075 patients.

Catheter Cardiovasc Interv. 2021-7-1

[8]
Development of novel Ti-Mo-Mn alloys for biomedical applications.

Sci Rep. 2020-4-14

[9]
Towards revealing key factors in mechanical instability of bioabsorbable Zn-based alloys for intended vascular stenting.

Acta Biomater. 2020-3-15

[10]
Molybdenum - A biodegradable implant material for structural applications?

Acta Biomater. 2020-3-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索