Brown University, Providence, RI, USA.
RAND Corporation, Santa Monica, CA, USA.
Med Decis Making. 2021 Aug;41(6):714-726. doi: 10.1177/0272989X211009161. Epub 2021 May 8.
Calibration of a microsimulation model (MSM) is a challenging but crucial step for the development of a valid model. Numerous calibration methods for MSMs have been suggested in the literature, most of which are usually adjusted to the specific needs of the model and based on subjective criteria for the selection of optimal parameter values. This article compares 2 general approaches for calibrating MSMs used in medical decision making, a Bayesian and an empirical approach. We use as a tool the MIcrosimulation Lung Cancer (MILC) model, a streamlined, continuous-time, dynamic MSM that describes the natural history of lung cancer and predicts individual trajectories accounting for age, sex, and smoking habits. We apply both methods to calibrate MILC to observed lung cancer incidence rates from the Surveillance, Epidemiology and End Results (SEER) database. We compare the results from the 2 methods in terms of the resulting parameter distributions, model predictions, and efficiency. Although the empirical method proves more practical, producing similar results with smaller computational effort, the Bayesian method resulted in a calibrated model that produced more accurate outputs for rare events and is based on a well-defined theoretical framework for the evaluation and interpretation of the calibration outcomes. A combination of the 2 approaches is an alternative worth considering for calibrating complex predictive models, such as microsimulation models.
校准微观模拟模型(MSM)是开发有效模型的挑战性但至关重要的步骤。文献中已经提出了许多用于 MSM 的校准方法,其中大多数方法通常根据模型的特定需求进行调整,并基于选择最佳参数值的主观标准。本文比较了用于医学决策的两种校准 MSM 的一般方法,贝叶斯方法和经验方法。我们使用 MIcrosimulation Lung Cancer(MILC)模型作为工具,该模型是一种简化的、连续时间的动态 MSM,用于描述肺癌的自然史,并根据年龄、性别和吸烟习惯预测个体轨迹。我们将这两种方法都应用于根据 Surveillance、Epidemiology and End Results(SEER)数据库中的观察性肺癌发病率校准 MILC。我们从参数分布、模型预测和效率方面比较了这两种方法的结果。虽然经验方法更实用,用更小的计算工作量产生相似的结果,但贝叶斯方法产生的校准模型在稀有事件上产生更准确的输出,并且基于评估和解释校准结果的明确定义的理论框架。对于校准复杂的预测模型(例如微观模拟模型),可以考虑将这两种方法结合起来。