Suppr超能文献

用于混合可再生能源系统优化规模的混合元启发式算法:最新技术综述

Hybrid Meta-Heuristic Algorithms for Optimal Sizing of Hybrid Renewable Energy System: A Review of the State-of-the-Art.

作者信息

Bouaouda Anas, Sayouti Yassine

机构信息

Faculty of Sciences and Techniques of Mohammedia, Hassan II University, Casablanca, Morocco.

出版信息

Arch Comput Methods Eng. 2022;29(6):4049-4083. doi: 10.1007/s11831-022-09730-x. Epub 2022 Mar 16.

Abstract

UNLABELLED

The hybrid renewable energy system (HRES) has been presented as the most studied solution for improving the sustainability of energy production infrastructures in isolated areas. With the rapid growth of HRES markets, various issues and aspects must be taken into consideration when the major working about the hybridization of renewable energy sources, consequently optimization problem solving for this system is a requirement. Therefore, this paper presents a state-of-the-art review of hybrid meta-heuristic algorithms applied for the optimal size of HRES. The relevant literature source and their distribution are presented firstly. We then review the literature from two viewpoints, including existing applied hybrid meta-heuristic algorithms for single-objective and for multi-objective design. Finally, some promising paths ranging from improving algorithms to technical applications are outlined to encourage researchers to conduct research in related fields.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s11831-022-09730-x.

摘要

未标注

混合可再生能源系统(HRES)已被视为改善偏远地区能源生产基础设施可持续性方面研究最多的解决方案。随着HRES市场的快速增长,在开展可再生能源源混合的主要工作时,必须考虑各种问题和方面,因此解决该系统的优化问题是一项必要任务。为此,本文对应用于HRES最优规模的混合元启发式算法进行了最新综述。首先介绍了相关文献来源及其分布情况。然后,我们从两个角度对文献进行综述,包括现有的用于单目标和多目标设计的混合元启发式算法。最后,概述了从改进算法到技术应用等一些有前景的方向,以鼓励研究人员在相关领域开展研究。

补充信息

在线版本包含可在10.1007/s11831-022-09730-x获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d5b/8926421/f540f7d6f1eb/11831_2022_9730_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验