Gurumoorthi G, Senthilkumar S, Karthikeyan G, Alsaif Faisal
Department of Mechanical Engineering, E.G.S. Pillay Engineering College, Nagapattinam, 611002, India.
Department of Electronics and Communication Engineering, E.G.S. Pillay Engineering College, Nagapattinam, 611002, India.
Sci Rep. 2024 Aug 21;14(1):19377. doi: 10.1038/s41598-024-69483-4.
The reliable operation of power systems while integrating renewable energy systems depends on Optimal Power Flow (OPF). Power systems meet the operational demands by efficiently managing the OPF. Identifying the optimal solution for the OPF problem is essential to ensure voltage stability, and minimize power loss and fuel cost when the power system is integrated with renewable energy resources. The traditional procedure to find the optimal solution utilizes nature-inspired metaheuristic optimization algorithms which exhibit performance drop in terms of high convergence rate and local optimal solution while handling uncertainties and nonlinearities in Hybrid Renewable Energy Systems (HRES). Thus, a novel hybrid model is presented in this research work using Deep Reinforcement Learning (DRL) with Quantum Inspired Genetic Algorithm (DRL-QIGA). The DRL in the proposed model effectively combines the proximal policy network to optimize power generation in real-time. The ability to learn and adapt to the changes in a real-time environment makes DRL to be suitable for the proposed model. Meanwhile, the QIGA enhances the global search process through the quantum computing principle, and this improves the exploitation and exploration features while searching for optimal solutions for the OPF problem. The proposed model experimental evaluation utilizes a modified IEEE 30-bus system to validate the performance. Comparative analysis demonstrates the proposed model's better performance in terms of reduced fuel cost of $620.45, minimized power loss of 1.85 MW, and voltage deviation of 0.065 compared with traditional optimization algorithms.
在整合可再生能源系统的同时,电力系统的可靠运行依赖于最优潮流(OPF)。电力系统通过有效管理最优潮流来满足运行需求。确定最优潮流问题的最优解对于确保电压稳定性、在电力系统与可再生能源资源整合时最小化功率损耗和燃料成本至关重要。寻找最优解的传统方法利用受自然启发的元启发式优化算法,这些算法在处理混合可再生能源系统(HRES)中的不确定性和非线性时,在收敛速度和局部最优解方面表现出性能下降。因此,本研究工作提出了一种使用深度强化学习(DRL)与量子启发遗传算法(DRL-QIGA)的新型混合模型。所提出模型中的深度强化学习有效地结合近端策略网络以实时优化发电。在实时环境中学习和适应变化的能力使深度强化学习适用于所提出的模型。同时,量子启发遗传算法通过量子计算原理增强了全局搜索过程,这在为最优潮流问题寻找最优解时改善了开发和探索特性。所提出模型的实验评估利用改进的IEEE 30节点系统来验证性能。对比分析表明,与传统优化算法相比,所提出的模型在降低燃料成本620.45美元、最小化功率损耗1.85兆瓦和电压偏差0.065方面具有更好的性能。