Said Mokhtar, Ismaeel Alaa A K, El-Rifaie Ali M, Hashim Fatma A, Bouaouda Anas, Hassan Amir Y, Abdelaziz Almoataz Y, Houssein Essam H
Electrical Engineering Department, Faculty of Engineering, Fayoum University, Faiyum, Egypt.
Faculty of Computer Studies (FCS), Arab Open University - Oman (AOU), Muscat, Sultanate of Oman.
Sci Rep. 2024 Dec 3;14(1):30079. doi: 10.1038/s41598-024-81125-3.
The evaluation of photovoltaic (PV) model parameters has gained importance considering emerging new energy power systems. Because weather patterns are unpredictable, variations in PV output power are nonlinear and periodic. It is impractical to rely on a time series because traditional power forecast techniques are based on linearity. As a result, meta-heuristic algorithms have drawn significant attention for their exceptional performance in extracting characteristics from solar cell models. This study analyzes a new modification in the double-diode solar cell model (NMDDSCM) to evaluate its performance compared with the traditional double-diode solar cell model (TDDSCM). Modified Fire Hawk Optimizer (mFHO) is applied to identify the photovoltaic parameters (PV) of the TDDSCM and NMDDSCM models. The Modified Fire Hawks Optimizer (mFHO) algorithm, which incorporates two enhancement strategies to address the shortcomings of FHO. The experimental performance is evaluated by investigating the scores achieved by the method on the CEC-2022 standard test suite. The parameter extraction of the TDDSCM and NMDDSCM is an optimization problem treated with an objective function to minimize the root mean square error (RMSE) between the calculated and the measured data. Real data of the R.T.C France solar cell is used to verify the performance of NMDDSCM. The effectiveness of the mFHO algorithm is compared with other algorithms such as Teaching Learning-Based Optimization (TLBO), Grey Wolf Optimizer (GWO), Fire Hawk Optimizer (FHO), Moth Flame Optimization (MFO), Heap Based optimization (HBO), and Chimp Optimization Algorithm (ChOA). The best objective function for the TDDSCM equal to 0.000983634 and its value for NMDDSCM equal to 0.000982485 that is achieved by the mFHO algorithm. The obtained results have proved the NMDDSCM's superiority over TDDSCM for all competitor techniques.
考虑到新兴的新能源电力系统,光伏(PV)模型参数的评估变得愈发重要。由于天气模式不可预测,光伏输出功率的变化是非线性且周期性的。依赖时间序列是不切实际的,因为传统的功率预测技术基于线性关系。因此,元启发式算法因其在从太阳能电池模型中提取特征方面的卓越性能而备受关注。本研究分析了双二极管太阳能电池模型的一种新改进(NMDDSCM),以评估其与传统双二极管太阳能电池模型(TDDSCM)相比的性能。应用改进的火鹰优化器(mFHO)来识别TDDSCM和NMDDSCM模型的光伏参数(PV)。改进的火鹰优化器(mFHO)算法结合了两种增强策略来解决火鹰优化器(FHO)的缺点。通过研究该方法在CEC - 2022标准测试套件上获得的分数来评估实验性能。TDDSCM和NMDDSCM的参数提取是一个优化问题,通过一个目标函数来处理,以最小化计算数据与测量数据之间的均方根误差(RMSE)。使用法国R.T.C太阳能电池的实际数据来验证NMDDSCM的性能。将mFHO算法的有效性与其他算法进行比较,如基于教学学习的优化(TLBO)、灰狼优化器(GWO)、火鹰优化器(FHO)、蛾焰优化(MFO)、基于堆的优化(HBO)和黑猩猩优化算法(ChOA)。mFHO算法实现的TDDSCM的最佳目标函数等于0.000983634,其NMDDSCM的值等于0.000982485。所得结果证明了在所有竞争技术中,NMDDSCM优于TDDSCM。