Universitat Politècnica de Catalunya (BarcelonaTech), 08034 Barcelona, Spain; Eurecat, Centre Tecnològic de Catalunya, 08005 Barcelona, Spain.
Universitat Politècnica de Catalunya (BarcelonaTech), 08034 Barcelona, Spain.
Methods. 2022 Aug;204:340-347. doi: 10.1016/j.ymeth.2022.03.005. Epub 2022 Mar 18.
Emotional and physical health are strongly connected and should be taken care of simultaneously to ensure completely healthy persons. A person's emotional health can be determined by detecting emotional states from various physiological measurements (EDA, RB, EEG, etc.). Affective Computing has become the field of interest, which uses software and hardware to detect emotional states. In the IoT era, wearable sensor-based real-time multi-modal emotion state classification has become one of the hottest topics. In such setting, a data stream is generated from wearable-sensor devices, data accessibility is restricted to those devices only and usually a high data generation rate should be processed to achieve real-time emotion state responses. Additionally, protecting the users' data privacy makes the processing of such data even more challenging. Traditional classifiers have limitations to achieve high accuracy of emotional state detection under demanding requirements of decentralized data and protecting users' privacy of sensitive information as such classifiers need to see all data. Here comes the federated learning, whose main idea is to create a global classifier without accessing the users' local data. Therefore, we have developed a federated learning framework for real-time emotion state classification using multi-modal physiological data streams from wearable sensors, called Fed-ReMECS. The main findings of our Fed-ReMECS framework are the development of an efficient and scalable real-time emotion classification system from distributed multimodal physiological data streams, where the global classifier is built without accessing (privacy protection) the users' data in an IoT environment. The experimental study is conducted using the popularly used multi-modal benchmark DEAP dataset for emotion classification. The results show the effectiveness of our developed approach in terms of accuracy, efficiency, scalability and users' data privacy protection.
身心健康密切相关,应同时加以照顾,以确保人们完全健康。一个人的情绪健康可以通过从各种生理测量(EDA、RB、EEG 等)中检测情绪状态来确定。情感计算已成为一个关注领域,它使用软件和硬件来检测情感状态。在物联网时代,基于可穿戴传感器的实时多模态情绪状态分类已成为热门话题之一。在这种环境下,数据流由可穿戴传感器设备生成,数据仅可访问这些设备,并且通常需要处理高速数据生成率,以实现实时情绪状态响应。此外,保护用户的数据隐私使得处理此类数据更加具有挑战性。传统的分类器在要求分散数据和保护用户敏感信息隐私的情况下,实现情绪状态检测的高精度存在局限性,因为这些分类器需要查看所有数据。这就需要使用联邦学习,其主要思想是在不访问用户本地数据的情况下创建全局分类器。因此,我们开发了一种使用来自可穿戴传感器的多模态生理数据流的联邦学习框架来实时进行情绪状态分类,称为 Fed-ReMECS。我们的 Fed-ReMECS 框架的主要发现是从分布式多模态生理数据流中开发高效且可扩展的实时情绪分类系统,其中在物联网环境中构建全局分类器而无需访问(隐私保护)用户数据。实验研究使用流行的多模态基准 DEAP 数据集进行情感分类。结果表明,我们开发的方法在准确性、效率、可扩展性和用户数据隐私保护方面的有效性。