Seis Yannick, Capelle Thibault, Langman Eric, Saarinen Sampo, Planz Eric, Schliesser Albert
Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark.
Center for Hybrid Quantum Networks (Hy-Q), Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
Nat Commun. 2022 Mar 21;13(1):1507. doi: 10.1038/s41467-022-29115-9.
Cavity electromechanics relies on parametric coupling between microwave and mechanical modes to manipulate the mechanical quantum state, and provide a coherent interface between different parts of hybrid quantum systems. High coherence of the mechanical mode is of key importance in such applications, in order to protect the quantum states it hosts from thermal decoherence. Here, we introduce an electromechanical system based around a soft-clamped mechanical resonator with an extremely high Q-factor (>10) held at very low (30 mK) temperatures. This ultracoherent mechanical resonator is capacitively coupled to a microwave mode, strong enough to enable ground-state-cooling of the mechanics ([Formula: see text]). This paves the way towards exploiting the extremely long coherence times (t > 100 ms) offered by such systems for quantum information processing and state conversion.
腔电动力学依靠微波与机械模式之间的参数耦合来操纵机械量子态,并在混合量子系统的不同部分之间提供一个相干接口。在这类应用中,机械模式的高相干性至关重要,以便保护其所承载的量子态免受热退相干的影响。在此,我们介绍一种基于软夹持机械谐振器的机电系统,该谐振器在极低(30 mK)温度下具有极高的品质因数(>10)。这个超相干机械谐振器通过电容耦合到一个微波模式,其耦合强度足以实现力学的基态冷却([公式:见原文])。这为利用此类系统提供的极长相干时间(t > 100 ms)进行量子信息处理和态转换铺平了道路。