Cupertino Andrea, Shin Dongil, Guo Leo, Steeneken Peter G, Bessa Miguel A, Norte Richard A
Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.
Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.
Nat Commun. 2024 May 18;15(1):4255. doi: 10.1038/s41467-024-48183-7.
High-aspect-ratio mechanical resonators are pivotal in precision sensing, from macroscopic gravitational wave detectors to nanoscale acoustics. However, fabrication challenges and high computational costs have limited the length-to-thickness ratio of these devices, leaving a largely unexplored regime in nano-engineering. We present nanomechanical resonators that extend centimeters in length yet retain nanometer thickness. We explore this expanded design space using an optimization approach which judiciously employs fast millimeter-scale simulations to steer the more computationally intensive centimeter-scale design optimization. By employing delicate nanofabrication techniques, our approach ensures high-yield realization, experimentally confirming room-temperature quality factors close to theoretical predictions. The synergy between nanofabrication, design optimization guided by machine learning, and precision engineering opens a solid-state path to room-temperature quality factors approaching 10 billion at kilohertz mechanical frequencies - comparable to the performance of leading cryogenic resonators and levitated nanospheres, even under significantly less stringent temperature and vacuum conditions.
从宏观引力波探测器到纳米尺度声学,高纵横比机械谐振器在精密传感中起着关键作用。然而,制造挑战和高计算成本限制了这些器件的长度与厚度比,在纳米工程领域留下了一个很大程度上未被探索的区域。我们展示了长度延伸至厘米级但仍保持纳米级厚度的纳米机械谐振器。我们使用一种优化方法探索这个扩展的设计空间,该方法明智地采用快速毫米级模拟来引导计算量更大的厘米级设计优化。通过采用精细的纳米制造技术,我们的方法确保了高产量实现,实验证实室温品质因数接近理论预测。纳米制造、由机器学习引导的设计优化和精密工程之间的协同作用,为在千赫兹机械频率下实现接近100亿的室温品质因数开辟了一条固态途径——即使在远不那么严格的温度和真空条件下,其性能也可与领先的低温谐振器和悬浮纳米球相媲美。