Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, National Clinical Research Center of Respiratory Diseases, China-Japan Friendship Hospitalgrid.415954.8, Beijing, China.
Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
Microbiol Spectr. 2022 Apr 27;10(2):e0274021. doi: 10.1128/spectrum.02740-21. Epub 2022 Mar 22.
Extensively drug-resistant Pseudomonas aeruginosa (XDRPA) infection is a significant public health threat due to a lack of effective therapeutic options. New β-lactam-β-lactamase inhibitor combinations, including ceftazidime-avibactam (CZA), have shown a high resistance rate to XDRPA. This study was therefore conducted to describe the underlying genomic mechanism of resistance for CZA nonsusceptible XDRPA strains that are non-metallo-β-lactamase (MBL) producers as well as to examine synergism of CZA and other antipseudomonal agents. Furthermore, the synergistic antibacterial activity of the most effective antimicrobial combination against non-MBL-producing XDRPA was evaluated through experiments. The resistance profiles of 15 CZA-resistant XDRPA strains isolated from clinical specimens in China-Japan Friendship Hospital between January 2017 to December 2020 were obtained by whole-genome sequencing (WGS) analysis. MBL genes and were found in 2 isolates (2/15, 13.3%); the other underlying CZA-resistance mechanisms involved the decreased OprD porin (13/13), overexpression (8/13) or mutation (13/13), and upregulated efflux pumps (13/13). CZA-imipenem (CZA-IPM) combination was identified to be the most effective against non-MBL-producing XDRPA according to the results of WGS analysis and combined antimicrobial susceptibility tests, with an approximately 16.62-fold reduction in MICs compared to CZA alone. Furthermore, the results of checkerboard analysis and growth curve displayed the synergistic antimicrobial activity of CZA and IPM against non-MBL-producing XDRPA. Electron microscopy also revealed that CZA-IPM combination might lead to more cellular structural alterations than CZA or IPM alone. This study suggested that the CZA-IPM combination has potential for non-MBL-producing XDRPA with overexpression or mutation, decreased OprD porin, and upregulated efflux pumps. Handling the infections by extensively drug-resistant Pseudomonas aeruginosa (XDRPA) strains is challenging due to their complicated antibiotic resistance mechanisms in immunosuppressed patients with pulmonary diseases (e.g., cystic fibrosis, chronic obstructive pulmonary disease, and lung transplant), ventilator-associated pneumonia, and bloodstream infections. The current study suggested the potentiality of the ceftazidime-avibactam-imipenem combination against XDRPA with overexpression or mutation, decreased OprD porin, and/or upregulated efflux pumps. Our findings indicate the necessity of combined drug sensitivity tests against XDRPA and also lay a foundation for the development of prevention, control, and treatment strategies in XDRPA infections.
广泛耐药铜绿假单胞菌(XDRPA)感染是一个重大的公共卫生威胁,因为缺乏有效的治疗选择。新的β-内酰胺-酶抑制剂组合,包括头孢他啶-阿维巴坦(CZA),对 XDRPA 表现出很高的耐药率。因此,本研究旨在描述对非产金属β-内酰胺酶(MBL)的 CZA 不敏感 XDRPA 菌株的潜在基因组耐药机制,并研究 CZA 与其他抗假单胞菌药物的协同作用。此外,通过实验评估了针对非产 MBL 的 XDRPA 的最有效抗菌组合的协同抗菌活性。通过全基因组测序(WGS)分析,获得了 2017 年 1 月至 2020 年 12 月期间从中日友好医院临床标本中分离的 15 株 CZA 耐药 XDRPA 菌株的耐药谱。发现 2 株(2/15,13.3%)携带 MBL 基因 和 ;其他潜在的 CZA 耐药机制包括 OprD 孔蛋白减少(13/13)、过度表达(8/13)或突变(13/13)以及上调外排泵(13/13)。根据 WGS 分析和联合药敏试验的结果,CZA-亚胺培南(CZA-IPM)组合被确定为对非产 MBL 的 XDRPA 最有效,与单独使用 CZA 相比,MIC 降低了约 16.62 倍。此外,棋盘分析和生长曲线的结果显示 CZA 和 IPM 对非产 MBL 的 XDRPA 具有协同抗菌活性。电子显微镜也显示,CZA-IPM 组合可能导致比 CZA 或 IPM 单独使用更多的细胞结构改变。这项研究表明,CZA-IPM 组合可能对 过度表达或突变、OprD 孔蛋白减少和/或外排泵上调的非产 MBL 的 XDRPA 具有潜力。
在免疫抑制的肺部疾病(如囊性纤维化、慢性阻塞性肺疾病和肺移植)、呼吸机相关性肺炎和血流感染患者中,处理广泛耐药铜绿假单胞菌(XDRPA)菌株的感染具有挑战性,因为它们的抗生素耐药机制很复杂。目前的研究表明,头孢他啶-阿维巴坦-亚胺培南联合用药可能对 过度表达或突变、OprD 孔蛋白减少和/或外排泵上调的 XDRPA 具有潜力。我们的研究结果表明,有必要对 XDRPA 进行联合药物敏感性试验,并为 XDRPA 感染的预防、控制和治疗策略的制定奠定基础。