Suppr超能文献

癌症中的蛋白质合成控制:选择性和治疗靶向。

Protein synthesis control in cancer: selectivity and therapeutic targeting.

机构信息

Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.

Department of Urology, University of California, San Francisco, San Francisco, CA, USA.

出版信息

EMBO J. 2022 Apr 19;41(8):e109823. doi: 10.15252/embj.2021109823. Epub 2022 Mar 22.

Abstract

Translational control of mRNAs is a point of convergence for many oncogenic signals through which cancer cells tune protein expression in tumorigenesis. Cancer cells rely on translational control to appropriately adapt to limited resources while maintaining cell growth and survival, which creates a selective therapeutic window compared to non-transformed cells. In this review, we first discuss how cancer cells modulate the translational machinery to rapidly and selectively synthesize proteins in response to internal oncogenic demands and external factors in the tumor microenvironment. We highlight the clinical potential of compounds that target different translation factors as anti-cancer therapies. Next, we detail how RNA sequence and structural elements interface with the translational machinery and RNA-binding proteins to coordinate the translation of specific pro-survival and pro-growth programs. Finally, we provide an overview of the current and emerging technologies that can be used to illuminate the mechanisms of selective translational control in cancer cells as well as within the microenvironment.

摘要

mRNA 的翻译调控是许多致癌信号的交汇点,癌细胞通过这些信号在肿瘤发生过程中调节蛋白质表达。癌细胞依靠翻译调控来适当地适应有限的资源,同时保持细胞生长和存活,这与非转化细胞相比创造了一个选择性的治疗窗口。在这篇综述中,我们首先讨论了癌细胞如何调节翻译机制,以快速和选择性地合成蛋白质,以响应内部致癌需求和肿瘤微环境中的外部因素。我们强调了靶向不同翻译因子的化合物作为抗癌疗法的临床潜力。接下来,我们详细介绍了 RNA 序列和结构元件如何与翻译机制和 RNA 结合蛋白相互作用,以协调特定的生存和促生长程序的翻译。最后,我们概述了目前和新兴的技术,这些技术可以用来阐明癌细胞内以及微环境中选择性翻译调控的机制。

相似文献

1
Protein synthesis control in cancer: selectivity and therapeutic targeting.
EMBO J. 2022 Apr 19;41(8):e109823. doi: 10.15252/embj.2021109823. Epub 2022 Mar 22.
2
Translational control of aberrant stress responses as a hallmark of cancer.
J Pathol. 2018 Apr;244(5):650-666. doi: 10.1002/path.5030. Epub 2018 Feb 20.
3
The plasticity of mRNA translation during cancer progression and therapy resistance.
Nat Rev Cancer. 2021 Sep;21(9):558-577. doi: 10.1038/s41568-021-00380-y. Epub 2021 Aug 2.
4
Targeting RNA helicases in cancer: The translation trap.
Biochim Biophys Acta Rev Cancer. 2017 Dec;1868(2):510-520. doi: 10.1016/j.bbcan.2017.09.006. Epub 2017 Sep 28.
5
DUBbing Down Translation: The Functional Interaction of Deubiquitinases with the Translational Machinery.
Mol Cancer Ther. 2019 Sep;18(9):1475-1483. doi: 10.1158/1535-7163.MCT-19-0307.
6
The biological and therapeutic relevance of mRNA translation in cancer.
Nat Rev Clin Oncol. 2011 May;8(5):280-91. doi: 10.1038/nrclinonc.2011.16. Epub 2011 Mar 1.
7
The role of dysregulated mRNA translation machinery in cancer pathogenesis and therapeutic value of ribosome-inactivating proteins.
Biochim Biophys Acta Rev Cancer. 2023 Nov;1878(6):189018. doi: 10.1016/j.bbcan.2023.189018. Epub 2023 Nov 7.
8
The Role of mRNA Translational Control in Tumor Immune Escape and Immunotherapy Resistance.
Cancer Res. 2021 Nov 15;81(22):5596-5604. doi: 10.1158/0008-5472.CAN-21-1466. Epub 2021 Sep 1.
9
uORF-mediated translational control: recently elucidated mechanisms and implications in cancer.
RNA Biol. 2019 Oct;16(10):1327-1338. doi: 10.1080/15476286.2019.1632634. Epub 2019 Jun 24.
10
The two faces of the Integrated Stress Response in cancer progression and therapeutic strategies.
Int J Biochem Cell Biol. 2021 Oct;139:106059. doi: 10.1016/j.biocel.2021.106059. Epub 2021 Aug 13.

引用本文的文献

3
The role of Ephexin1 in translation and mTOR-targeted cancer therapy.
Exp Mol Med. 2025 Aug 25. doi: 10.1038/s12276-025-01520-2.
7
Sensitivity to an inhibitor of translation elongation in solid and hematologic cancers.
Sci Rep. 2025 Jul 1;15(1):21328. doi: 10.1038/s41598-025-06273-6.
10
Pan-cancer analysis identifies tRNA modification enzyme CTU2 as a novel tumor biomarker and its role in immune microenvironment.
Front Immunol. 2025 May 1;16:1547794. doi: 10.3389/fimmu.2025.1547794. eCollection 2025.

本文引用的文献

1
Zotatifin, an eIF4A-Selective Inhibitor, Blocks Tumor Growth in Receptor Tyrosine Kinase Driven Tumors.
Front Oncol. 2021 Nov 24;11:766298. doi: 10.3389/fonc.2021.766298. eCollection 2021.
3
Assessing eukaryotic initiation factor 4F subunit essentiality by CRISPR-induced gene ablation in the mouse.
Cell Mol Life Sci. 2021 Oct;78(19-20):6709-6719. doi: 10.1007/s00018-021-03940-5. Epub 2021 Sep 24.
4
Single-cell Ribo-seq reveals cell cycle-dependent translational pausing.
Nature. 2021 Sep;597(7877):561-565. doi: 10.1038/s41586-021-03887-4. Epub 2021 Sep 8.
5
Mechanisms that ensure speed and fidelity in eukaryotic translation termination.
Science. 2021 Aug 20;373(6557):876-882. doi: 10.1126/science.abi7801.
8
Revealing molecular pathways for cancer cell fitness through a genetic screen of the cancer translatome.
Cell Rep. 2021 Jun 29;35(13):109321. doi: 10.1016/j.celrep.2021.109321.
9
Quantitative single-cell proteomics as a tool to characterize cellular hierarchies.
Nat Commun. 2021 Jun 7;12(1):3341. doi: 10.1038/s41467-021-23667-y.
10
Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors.
Nat Rev Gastroenterol Hepatol. 2021 Jul;18(7):493-502. doi: 10.1038/s41575-021-00457-x. Epub 2021 May 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验