Suppr超能文献

基于剂量的模型预测头颈部癌症质子治疗的每周解剖学变化。

DIR-based models to predict weekly anatomical changes in head and neck cancer proton therapy.

机构信息

Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom.

CRUK RadNet Glasgow, University of Glasgow, Beatson West of Scotland Cancer Centre, Radiotherapy Physics, NHS Greater Glasgow and Clyde, Glasgow, United Kingdom.

出版信息

Phys Med Biol. 2022 Apr 15;67(9):095001. doi: 10.1088/1361-6560/ac5fe2.

Abstract

. We proposed two anatomical models for head and neck patients to predict anatomical changes during the course of radiotherapy.. Deformable image registration was used to build two anatomical models: (1) the average model (AM) simulated systematic progressive changes across the patient cohort; (2) the refined individual model (RIM) used a patient's CT images acquired during treatment to update the prediction for each individual patient. Planning CTs and weekly CTs were used from 20 nasopharynx patients. This dataset included 15 training patients and 5 test patients. For each test patient, a spot scanning proton plan was created. Models were evaluated using CT number differences, contours, proton spot location deviations and dose distributions.. If no model was used, the CT number difference between the planning CT and the repeat CT at week 6 of treatment was on average 128.9 Hounsfield Units (HU) over the test population. This can be reduced to 115.5 HU using the AM, and to 110.5 HU using the RIM(RIM, updated at week (3). When the predicted contours from the models were used, the average mean surface distance of parotid glands can be reduced from 1.98 (no model) to 1.16 mm (AM) and 1.19 mm (RIM) at week 6. Using the proton spot range, the average anatomical uncertainty over the test population reduced from 4.47 ± 1.23 (no model) to 2.41 ± 1.12 mm (AM), and 1.89 ± 0.96 mm (RIM). Based on the gamma analysis, the average gamma index over the test patients was improved from 93.87 ± 2.48 % (no model) to 96.16 ± 1.84% (RIM) at week 6.. The AM and the RIM both demonstrated the ability to predict anatomical changes during the treatment. The RIM can gradually refine the prediction of anatomical changes based on the AM. The proton beam spots provided an accurate and effective way for uncertainty evaluation.

摘要

我们提出了两种针对头颈部患者的解剖模型,以预测放疗过程中的解剖变化。我们使用形变图像配准来构建两种解剖模型:(1)平均模型(AM)模拟患者群体中的系统性渐进变化;(2)细化个体模型(RIM)使用患者在治疗期间采集的 CT 图像来更新对每个个体患者的预测。从 20 名鼻咽癌患者中采集了计划 CT 和每周 CT。该数据集包括 15 名训练患者和 5 名测试患者。对于每个测试患者,都创建了一个质子点扫描计划。我们使用 CT 数差值、轮廓、质子点位置偏差和剂量分布来评估模型。如果不使用模型,在治疗第 6 周时,计划 CT 与重复 CT 之间的 CT 数差值在测试人群中平均为 128.9 亨氏单位(HU)。使用 AM 可以将其减少到 115.5 HU,使用 RIM(在第 3 周更新)可以减少到 110.5 HU。当使用模型预测的轮廓时,腮腺的平均平均表面距离可以从 1.98(无模型)减少到 1.16 毫米(AM)和 1.19 毫米(RIM)在第 6 周。使用质子点范围,测试人群中的平均解剖不确定性从 4.47±1.23(无模型)减少到 2.41±1.12 毫米(AM)和 1.89±0.96 毫米(RIM)。基于伽马分析,在第 6 周时,测试患者的平均伽马指数从 93.87±2.48%(无模型)提高到 96.16±1.84%(RIM)。AM 和 RIM 都表现出预测治疗过程中解剖变化的能力。RIM 可以基于 AM 逐渐细化对解剖变化的预测。质子束点为不确定性评估提供了一种准确有效的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd18/10437002/83ed8b76a333/pmbac5fe2f1_lr.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验