Suppr超能文献

通过不确定性归因学习二氧化硅 - 水的反应潜力。

Learning a reactive potential for silica-water through uncertainty attribution.

作者信息

Roy Swagata, Dürholt Johannes P, Asche Thomas S, Zipoli Federico, Gómez-Bombarelli Rafael

机构信息

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Evonik Operations GmbH, Essen, North Rhine-Westphalia, Germany.

出版信息

Nat Commun. 2024 Jul 17;15(1):6030. doi: 10.1038/s41467-024-50407-9.

Abstract

The reactivity of silicates in aqueous solution is relevant to various chemistries ranging from silicate minerals in geology, to the C-S-H phase in cement, nanoporous zeolite catalysts, or highly porous precipitated silica. While simulations of chemical reactions can provide insight at the molecular level, balancing accuracy and scale in reactive simulations in the condensed phase is a challenge. Here, we demonstrate how a machine-learning reactive interatomic potential trained on PaiNN architecture can accurately capture silicate-water reactivity. The model was trained on a dataset comprising 400,000 energies and forces of molecular clusters at the ωB97X-D3/def2-TZVP level. To ensure the robustness of the model, we introduce a general active learning strategy based on the attribution of the model uncertainty, that automatically isolates uncertain regions of bulk simulations to be calculated as small-sized clusters. The potential reproduces static and dynamic properties of liquid water and solid crystalline silicates, despite having been trained exclusively on cluster data. Furthermore, we utilize enhanced sampling simulations to recover the self-ionization reactivity of water accurately, and the acidity of silicate oligomers, and lastly study the silicate dimerization reaction in a water solution at neutral conditions and find that the reaction occurs through a flanking mechanism.

摘要

硅酸盐在水溶液中的反应活性与多种化学领域相关,从地质学中的硅酸盐矿物,到水泥中的C-S-H相、纳米多孔沸石催化剂或高度多孔的沉淀二氧化硅。虽然化学反应模拟可以在分子水平上提供见解,但在凝聚相反应模拟中平衡准确性和规模是一项挑战。在这里,我们展示了一种基于PaiNN架构训练的机器学习反应性原子间势如何能够准确捕捉硅酸盐-水的反应活性。该模型在一个包含400,000个分子簇在ωB97X-D3/def2-TZVP水平下的能量和力的数据集上进行训练。为确保模型的稳健性,我们引入了一种基于模型不确定性归因的通用主动学习策略,该策略自动隔离体相模拟中的不确定区域,将其作为小尺寸簇进行计算。尽管该势仅在簇数据上进行训练,但它能够再现液态水和固态结晶硅酸盐的静态和动态性质。此外,我们利用增强采样模拟准确恢复水的自电离反应活性以及硅酸盐低聚物的酸度,最后研究中性条件下水溶液中的硅酸盐二聚反应,发现该反应通过侧翼机制发生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed8/11254924/310b9bb1fec5/41467_2024_50407_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验