Suppr超能文献

利用荧光光谱和多光谱成像技术对黄曲霉毒素 B 污染(玉米)种子进行指纹图谱分析:一项初步研究。

Fluorescence spectroscopy and multispectral imaging for fingerprinting of aflatoxin-B contaminated (Zea mays L.) seeds: a preliminary study.

机构信息

University of Belgrade, Institute for Multidisciplinary Research, P.O. Box 33, 11030, Belgrade, Serbia.

Videometer A/S, Herlev, Denmark.

出版信息

Sci Rep. 2022 Mar 22;12(1):4849. doi: 10.1038/s41598-022-08352-4.

Abstract

Cereal seeds safety may be compromised by the presence of toxic contaminants, such as aflatoxins. Besides being carcinogenic, they have other adverse health effects on humans and animals. In this preliminary study, we used two non-invasive optical techniques, optical fiber fluorescence spectroscopy and multispectral imaging (MSI), for discrimination of maize seeds naturally contaminated with aflatoxin B (AFB) from the uncontaminated seeds. The AFB-contaminated seeds exhibited a red shift of the emission maximum position compared to the control samples. Using linear discrimination analysis to analyse fluorescence data, classification accuracy of 100% was obtained to discriminate uncontaminated and AFB-contaminated seeds. The MSI analysis combined with a normalized canonical discriminant analysis, provided spectral and spatial patterns of the analysed seeds. The AFB-contaminated seeds showed a 7.9 to 9.6-fold increase in the seed reflectance in the VIS region, and 10.4 and 12.2-fold increase in the NIR spectral region, compared with the uncontaminated seeds. Thus the MSI method classified successfully contaminated from uncontaminated seeds with high accuracy. The results may have an impact on development of spectroscopic non-invasive methods for detection of AFs presence in seeds, providing valuable information for the assessment of seed adulteration in the field of food forensics and food safety.

摘要

谷物种子的安全性可能因存在有毒污染物(如黄曲霉毒素)而受到影响。这些污染物不仅具有致癌性,还会对人类和动物的健康产生其他不良影响。在这项初步研究中,我们使用了两种非侵入性的光学技术,光纤荧光光谱和多光谱成像(MSI),来区分天然受黄曲霉毒素 B(AFB)污染的玉米种子和未受污染的种子。与对照样品相比,受 AFB 污染的种子的发射最大值位置发生了红移。使用线性判别分析对荧光数据进行分析,可获得 100%的分类准确率,以区分未受污染和受 AFB 污染的种子。MSI 分析与归一化典型判别分析相结合,提供了所分析种子的光谱和空间模式。与未受污染的种子相比,受 AFB 污染的种子在可见光谱区的种子反射率增加了 7.9 到 9.6 倍,在近红外光谱区增加了 10.4 到 12.2 倍。因此,MSI 方法可以成功地对受污染的种子进行分类,具有很高的准确性。这些结果可能会对开发用于检测种子中 AFs 存在的光谱非侵入性方法产生影响,为食品取证和食品安全领域中种子掺假的评估提供有价值的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b62e/8940939/bb92c108f4eb/41598_2022_8352_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验