Zhang Chen, Tian Fujia, Lu Ying, Yuan Bing, Tan Zhi-Jie, Zhang Xing-Hua, Dai Liang
College of Life Sciences, The Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China.
Department of Physics, City University of Hong Kong, Hong Kong 999077, China.
Sci Adv. 2022 Mar 25;8(12):eabn1384. doi: 10.1126/sciadv.abn1384. Epub 2022 Mar 23.
DNA deformations upon environmental changes, e.g., salt and temperature, play crucial roles in many biological processes and material applications. Here, our magnetic tweezers experiments observed that the increase in NaCl, KCl, or RbCl concentration leads to substantial DNA overwinding. Our simulations and theoretical calculation quantitatively explain the salt-induced twist change through the mechanism: More salt enhances the screening of interstrand electrostatic repulsion and hence reduces DNA diameter, which is transduced to twist increase through twist-diameter coupling. We determined that the coupling constant is 4.5 ± 0.8 T/(degrees∙nm) for one base pair. The coupling comes from the restraint of the contour length of DNA backbone. On the basis of this coupling constant and diameter-dependent DNA conformational entropy, we predict the temperature dependence of DNA twist Δω/Δ ≈ -0.01 degree/°C, which agrees with our and previous experimental results. Our analysis suggests that twist-diameter coupling is a common driving force for salt- and temperature-induced DNA twist changes.
环境变化(如盐浓度和温度)引起的DNA变形在许多生物过程和材料应用中起着关键作用。在此,我们的磁镊实验观察到,NaCl、KCl或RbCl浓度的增加会导致DNA大量超螺旋。我们的模拟和理论计算通过以下机制定量解释了盐诱导的扭转变化:更多的盐增强了链间静电斥力的屏蔽作用,从而减小了DNA直径,通过扭转-直径耦合转化为扭转增加。我们确定一个碱基对的耦合常数为4.5±0.8 T/(度∙纳米)。这种耦合来自于DNA主链轮廓长度的限制。基于这个耦合常数和与直径相关的DNA构象熵,我们预测DNA扭转的温度依赖性为Δω/Δ≈ -0.01度/°C,这与我们和之前的实验结果一致。我们的分析表明,扭转-直径耦合是盐和温度诱导DNA扭转变化的常见驱动力。