Suppr超能文献

相似文献

2
Can MRI contribute to pulmonary nodule analysis?
J Magn Reson Imaging. 2019 Jun;49(7):e256-e264. doi: 10.1002/jmri.26587. Epub 2018 Dec 21.
3
Physics-Informed Discretization for Reproducible and Robust Radiomic Feature Extraction Using Quantitative MRI.
Invest Radiol. 2024 May 1;59(5):359-371. doi: 10.1097/RLI.0000000000001026. Epub 2023 Oct 9.
5
Magnetic Resonance Imaging of Part-solid Nodules: A Pilot Study.
J Thorac Imaging. 2016 Jan;31(1):2-10. doi: 10.1097/RTI.0000000000000176.
7
Breast Cancer Classification on Multiparametric MRI - Increased Performance of Boosting Ensemble Methods.
Technol Cancer Res Treat. 2022 Jan-Dec;21:15330338221087828. doi: 10.1177/15330338221087828.
9
Quantitative analysis of chest MRI images for benign malignant diagnosis of pulmonary solid nodules.
Front Oncol. 2023 Aug 4;13:1212608. doi: 10.3389/fonc.2023.1212608. eCollection 2023.

引用本文的文献

2
Evaluation of Pulmonary Nodules by Radiologists vs. Radiomics in Stand-Alone and Complementary CT and MRI.
Diagnostics (Basel). 2024 Feb 23;14(5):483. doi: 10.3390/diagnostics14050483.
4
Diffusion-Weighted MRI: Potential Tool for Pulmonary Nodule Characterization.
Indian J Radiol Imaging. 2023 Nov 23;34(1):1-2. doi: 10.1055/s-0043-1776884. eCollection 2024 Jan.
5
Quantitative analysis of chest MRI images for benign malignant diagnosis of pulmonary solid nodules.
Front Oncol. 2023 Aug 4;13:1212608. doi: 10.3389/fonc.2023.1212608. eCollection 2023.

本文引用的文献

1
Deep Vision for Breast Cancer Classification and Segmentation.
Cancers (Basel). 2021 Oct 27;13(21):5384. doi: 10.3390/cancers13215384.
2
Radiomics nomogram analysis of T2-fBLADE-TSE in pulmonary nodules evaluation.
Magn Reson Imaging. 2022 Jan;85:80-86. doi: 10.1016/j.mri.2021.10.010. Epub 2021 Oct 16.
4
The Growing Role for Semantic Segmentation in Urology.
Eur Urol Focus. 2021 Jul;7(4):692-695. doi: 10.1016/j.euf.2021.07.017. Epub 2021 Aug 18.
6
Lung Nodule Classification Using Biomarkers, Volumetric Radiomics, and 3D CNNs.
J Digit Imaging. 2021 Jun;34(3):647-666. doi: 10.1007/s10278-020-00417-y. Epub 2021 Feb 2.
7
Pulmonary MRI Radiomics and Machine Learning: Effect of Intralesional Heterogeneity on Classification of Lesion.
Acad Radiol. 2022 Feb;29 Suppl 2:S73-S81. doi: 10.1016/j.acra.2020.12.020. Epub 2021 Jan 22.
8
Motion correction and noise removing in lung diffusion-weighted MRI using low-rank decomposition.
Med Biol Eng Comput. 2020 Sep;58(9):2095-2105. doi: 10.1007/s11517-020-02224-7. Epub 2020 Jul 11.
10
Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods.
Eur Radiol. 2020 Aug;30(8):4595-4605. doi: 10.1007/s00330-020-06768-y. Epub 2020 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验