Koo Chi Wan, Kline Timothy L, Yoon Joo Hee, Vercnocke Andrew J, Johnson Mathew P, Suman Garima, Lu Aiming, Larson Nicholas B
Department of Radiology, Mayo Clinic, Rochester, MN, USA.
Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, MN, USA.
Br J Radiol. 2022 Dec 1;95(1140):20220230. doi: 10.1259/bjr.20220230. Epub 2022 Nov 15.
Investigate the performance of multiparametric MRI radiomic features, alone or combined with current standard-of-care methods, for pulmonary nodule classification. Assess the impact of segmentation variability on feature reproducibility and reliability.
Radiomic features were extracted from 74 pulmonary nodules of 68 patients who underwent nodule resection or biopsy after MRI exam. The MRI features were compared with histopathology and conventional quantitative imaging values (maximum standardized uptake value [SUVmax] and mean Hounsfield unit [HU]) to determine whether MRI radiomic features can differentiate types of nodules and associate with SUVmax and HU using Wilcoxon rank sum test and linear regression. Diagnostic performance of features and four machine learning (ML) models were evaluated with area under the receiver operating characteristic curve (AUC) and 95% confidence intervals (CIs). Concordance correlation coefficient (CCC) assessed the segmentation variation impact on feature reproducibility and reliability.
Elevn diffusion-weighted features distinguished malignant from benign nodules (adjusted < 0.05, AUC: 0.73-0.81). No features differentiated cancer types. Sixty-seven multiparametric features associated with mean CT HU and 14 correlated with SUVmax. All significant MRI features outperformed traditional imaging parameters (SUVmax, mean HU, apparent diffusion coefficient [ADC], T1, T2, dynamic contrast-enhanced imaging values) in distinguishing malignant from benign nodules with some achieving statistical significance ( < 0.05). Adding ADC and smoking history improved feature performance. Machine learning models demonstrated strong performance in nodule classification, with extreme gradient boosting (XGBoost) having the highest discrimination (AUC = 0.83, CI=[0.727, 0.932]). We found good to excellent inter- and intrareader feature reproducibility and reliability (CCC≥0.80).
Eleven MRI radiomic features differentiated malignant from benign lung nodules, outperforming traditional quantitative methods. MRI radiomic ML models demonstrated good nodule classification performances with XGBoost superior to three others. There was good to excellent inter- and intrareader feature reproducibility and reliability.
Our study identified MRI radiomic features that successfully differentiated malignant from benign lung nodules and demonstrated high performance of our MR radiomic feature-based ML models for nodule classification. These new findings could help further establish thoracic MRI as a non-invasive and radiation-free alternative to standard practice for pulmonary nodule assessment.
研究多参数MRI影像组学特征单独或与当前标准治疗方法联合用于肺结节分类的性能。评估分割变异性对特征可重复性和可靠性的影响。
从68例患者的74个肺结节中提取影像组学特征,这些患者在MRI检查后接受了结节切除或活检。将MRI特征与组织病理学以及传统定量成像值(最大标准化摄取值[SUVmax]和平均豪斯菲尔德单位[HU])进行比较,以确定MRI影像组学特征是否能够区分结节类型,并使用Wilcoxon秩和检验和线性回归分析与SUVmax和HU相关联。使用受试者操作特征曲线下面积(AUC)和95%置信区间(CI)评估特征和四种机器学习(ML)模型的诊断性能。一致性相关系数(CCC)评估分割变异对特征可重复性和可靠性的影响。
11个扩散加权特征可区分恶性和良性结节(校正后<0.05,AUC:0.73 - 0.81)。没有特征能够区分癌症类型。67个多参数特征与平均CT HU相关,14个与SUVmax相关。在区分恶性和良性结节方面,所有显著的MRI特征均优于传统成像参数(SUVmax、平均HU、表观扩散系数[ADC]、T1、T2、动态对比增强成像值),其中一些达到统计学意义(<0.05)。添加ADC和吸烟史可提高特征性能。机器学习模型在结节分类中表现出强大性能,极端梯度提升(XGBoost)具有最高的辨别力(AUC = 0.83,CI = [0.727, 0.932])。我们发现读者间和读者内特征的可重复性和可靠性良好至优秀(CCC≥0.80)。
11个MRI影像组学特征可区分恶性和良性肺结节,优于传统定量方法。MRI影像组学ML模型在结节分类中表现出良好性能,XGBoost优于其他三种模型。读者间和读者内特征的可重复性和可靠性良好至优秀。
我们的研究确定了成功区分恶性和良性肺结节的MRI影像组学特征,并证明了基于MR影像组学特征的ML模型在结节分类中的高性能。这些新发现有助于进一步确立胸部MRI作为肺结节评估标准实践的非侵入性和无辐射替代方法。