Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States of America.
Baylor College of Medicine, Houston, TX, United States of America.
J Neural Eng. 2022 Apr 5;19(2). doi: 10.1088/1741-2552/ac6063.
Epilepsy is a common neurological disorder in which patients suffer from sudden and unpredictable seizures. Seizures are caused by excessive and abnormal neuronal activity. Different methods have been employed to investigate electroencephalogram (EEG) data in patients with epilepsy. This paper introduces a simple yet accurate array-based method to study and predict seizures.We use the CHB-MIT dataset (all 24 cases), which includes scalp EEG recordings. The proposed method is based on the random matrix theory. After applying wavelet decomposition to denoise the data, we analyze the spatial coherence of the epileptic recordings by looking at the width of the covariance matrix eigenvalue distribution at different time and frequency bins.We train patient-specific support vector machine classifiers to distinguish between interictal and preictal data with high performance and a false prediction rate as low as 0.09 h. The proposed technique achieves an average accuracy, specificity, sensitivity, and area under the curve of 99.05%, 93.56%, 99.09%, and 0.99, respectively.Our proposed method outperforms state-of-the-art works in terms of sensitivity while maintaining a low false prediction rate. Also, in contrast to neural networks, which may achieve high performance, this work provides high sensitivity without compromising interpretability.
癫痫是一种常见的神经系统疾病,患者会突然且不可预测地发作。发作是由过度和异常的神经元活动引起的。已经采用了多种方法来研究癫痫患者的脑电图(EEG)数据。本文介绍了一种简单而准确的基于阵列的方法来研究和预测癫痫发作。我们使用了包括头皮 EEG 记录的 CHB-MIT 数据集(所有 24 个病例)。该方法基于随机矩阵理论。在用小波分解对数据进行去噪后,我们通过观察不同时间和频率-bin 的协方差矩阵特征值分布的宽度来分析癫痫记录的空间相干性。我们训练了特定于患者的支持向量机分类器,以高性能和低误报率(低至 0.09 h)区分间歇期和发作前数据。该方法的平均准确率、特异性、敏感性和曲线下面积分别为 99.05%、93.56%、99.09%和 0.99。与基于神经网络的方法相比,我们的方法在保持低误报率的同时,在敏感性方面表现优于最先进的方法。此外,与可能表现出高性能的神经网络不同,这项工作在不影响可解释性的情况下提供了高敏感性。