Suppr超能文献

共表达快速通道视紫红质和阶跃功能视蛋白克服光遗传学中由于光电流脱敏导致的尖峰失败:一项理论研究。

Co-expressing fast channelrhodopsin with step-function opsin overcomes spike failure due to photocurrent desensitization in optogenetics: a theoretical study.

机构信息

Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra 282005, India.

出版信息

J Neural Eng. 2022 Apr 6;19(2). doi: 10.1088/1741-2552/ac6061.

Abstract

A fundamental challenge in optogenetics is to elicit long-term high-fidelity neuronal spiking with negligible heating. Fast channelrhodopsins (ChRs) require higher irradiances and cause spike failure due to photocurrent desensitization under sustained illumination, whereas, more light-sensitive step-function opsins (SFOs) exhibit prolonged depolarization with insufficient photocurrent and fast response for high-fidelity spiking.We present a novel method to overcome this fundamental limitation by co-expressing fast ChRs with SFOs. A detailed theoretical analysis of ChETA co-expressed with different SFOs, namely ChR2(C128A), ChR2(C128S), stabilized step-function opsin (SSFO) and step-function opsin with ultra-high light sensitivity (SOUL), expressing hippocampal neurons has been carried out by formulating their accurate theoretical models.ChETA-SFO-expressing hippocampal neurons shows more stable photocurrent that overcomes spike failure. Spiking fidelity in these neurons can be sustained even at lower irradiances of subsequent pulses (77% of initial pulse intensity in ChETA-ChR2(C128A)-expressing neurons) or by using red-shifted light pulses at appropriate intervals. High-fidelity spiking upto 60 Hz can be evoked in ChETA-ChR2(C128S), ChETA-SSFO and ChETA-SOUL-expressing neurons, which cannot be attained with only SFOs.The present study provides important insights about photostimulation protocols for bi-stable switching of neurons. This new approach provides a means for sustained low-power, high-frequency and high-fidelity optogenetic switching of neurons, necessary to study various neural functions and neurodegenerative disorders, and enhance the utility of optogenetics for biomedical applications.

摘要

光遗传学面临的一个基本挑战是在无明显加热的情况下诱发出长期的、高保真的神经元尖峰活动。快速通道视蛋白(ChR)需要更高的辐照度,并且在持续光照下由于光电流脱敏而导致尖峰活动失败,而更敏感的阶跃功能视蛋白(SFO)表现出延长的去极化,光电流不足,并且对于高保真的尖峰活动具有快速响应。我们提出了一种通过共表达快速 ChR 和 SFO 来克服这一基本限制的新方法。通过对 ChETA 与不同 SFO(即 ChR2(C128A)、ChR2(C128S)、稳定阶跃功能视蛋白(SSFO)和超高光灵敏度阶跃功能视蛋白(SOUL))共表达的海马神经元进行详细的理论分析,通过构建它们的准确理论模型,来进行了阐述。ChETA-SFO 表达的海马神经元表现出更稳定的光电流,克服了尖峰活动失败。即使在后续脉冲的较低辐照度(ChETA-ChR2(C128A)表达神经元中初始脉冲强度的 77%)下,或者使用适当间隔的红移光脉冲,这些神经元中的尖峰保真度也可以持续。在 ChETA-ChR2(C128S)、ChETA-SSFO 和 ChETA-SOUL 表达的神经元中,可以诱发出高达 60 Hz 的高保真尖峰活动,而仅使用 SFO 则无法达到。本研究为神经元双稳态转换的光刺激方案提供了重要的见解。这种新方法为神经元的持续低功率、高频和高保真的光遗传学转换提供了一种手段,这对于研究各种神经功能和神经退行性疾病以及提高光遗传学在生物医学应用中的效用是必要的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验