Suppr超能文献

一种超灵敏的阶跃功能视蛋白,用于小鼠和猕猴的微创光遗传刺激。

An Ultra-Sensitive Step-Function Opsin for Minimally Invasive Optogenetic Stimulation in Mice and Macaques.

机构信息

Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Neuron. 2020 Jul 8;107(1):38-51.e8. doi: 10.1016/j.neuron.2020.03.032. Epub 2020 Apr 29.

Abstract

Optogenetics is among the most widely employed techniques to manipulate neuronal activity. However, a major drawback is the need for invasive implantation of optical fibers. To develop a minimally invasive optogenetic method that overcomes this challenge, we engineered a new step-function opsin with ultra-high light sensitivity (SOUL). We show that SOUL can activate neurons located in deep mouse brain regions via transcranial optical stimulation and elicit behavioral changes in SOUL knock-in mice. Moreover, SOUL can be used to modulate neuronal spiking and induce oscillations reversibly in macaque cortex via optical stimulation from outside the dura. By enabling external light delivery, our new opsin offers a minimally invasive tool for manipulating neuronal activity in rodent and primate models with fewer limitations on the depth and size of target brain regions and may further facilitate the development of minimally invasive optogenetic tools for the treatment of neurological disorders.

摘要

光遗传学是最广泛应用于操纵神经元活动的技术之一。然而,一个主要的缺点是需要侵入性地植入光纤。为了开发一种克服这一挑战的微创光遗传学方法,我们设计了一种具有超高光敏感性的新型阶跃功能视蛋白(SOUL)。我们表明,SOUL 可以通过颅外光学刺激激活位于小鼠大脑深部区域的神经元,并在 SOUL 基因敲入小鼠中引起行为变化。此外,SOUL 可用于通过硬膜外的外部光刺激来调节灵长类皮质中的神经元尖峰活动并诱导其可逆振荡。通过实现外部光传递,我们的新型视蛋白为在啮齿动物和灵长类动物模型中操纵神经元活动提供了一种微创工具,对目标大脑区域的深度和大小的限制更少,并且可能进一步促进用于治疗神经障碍的微创光遗传学工具的发展。

相似文献

9
Fiberless Optogenetics.无纤维光遗传学
Adv Exp Med Biol. 2021;1293:407-416. doi: 10.1007/978-981-15-8763-4_26.

引用本文的文献

2
Multifunctional bioelectronics for brain-body circuits.用于脑-体回路的多功能生物电子学。
Nat Rev Bioeng. 2025 Jun;3(6):465-484. doi: 10.1038/s44222-025-00289-3. Epub 2025 Mar 27.
8
The neuroimmune connectome in health and disease.健康与疾病中的神经免疫连接组
Nature. 2025 Feb;638(8050):333-342. doi: 10.1038/s41586-024-08474-x. Epub 2025 Feb 12.

本文引用的文献

3
Optogenetic Peripheral Nerve Immunogenicity.光遗传学外周神经免疫原性。
Sci Rep. 2018 Sep 19;8(1):14076. doi: 10.1038/s41598-018-32075-0.
8
Selective Optogenetic Control of Purkinje Cells in Monkey Cerebellum.猕猴小脑中浦肯野细胞的选择性光遗传学控制
Neuron. 2017 Jul 5;95(1):51-62.e4. doi: 10.1016/j.neuron.2017.06.002. Epub 2017 Jun 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验