Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands.
Leiden Institute of Chemistry Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333, CC Leiden, The Netherlands.
Chemistry. 2022 Jun 1;28(31):e202200755. doi: 10.1002/chem.202200755. Epub 2022 Apr 26.
The amino groups of thio- and selenoamides can act as stronger hydrogen-bond donors than of carboxamides, despite the lower electronegativity of S and Se. This phenomenon has been experimentally explored, particularly in organocatalysis, but a sound electronic explanation is lacking. Our quantum chemical investigations show that the NH groups in thio- and selenoamides are more positively charged than in carboxamides. This originates from the larger electronic density flow from the nitrogen lone pair of the NH group towards the lower-lying π* and π* orbitals than to the high-lying π* orbital. The relative energies of the π* orbitals result from the overlap between the chalcogen np and carbon 2p atomic orbitals, which is set by the carbon-chalcogen equilibrium distance, a consequence of the Pauli repulsion between the two bonded atoms. Thus, neither the electronegativity nor the often-suggested polarizability but the steric size of the chalcogen atom determines the amide's hydrogen-bond donor capability.
尽管硫和硒的电负性较低,但硫代和硒代酰胺的氨基可以作为比羧酰胺更强的氢键供体。这一现象已经在实验中得到了探索,特别是在有机催化中,但缺乏合理的电子解释。我们的量子化学研究表明,硫代和硒代酰胺中的 NH 基团比羧酰胺中的正电性更强。这源于氮原子的孤对电子从 NH 基团向较低的 π* 和 π* 轨道的电子密度流大于向高能的 π* 轨道的电子密度流。π*轨道的相对能量来自于硫属元素 np 和碳 2p 原子轨道之间的重叠,这是由两个成键原子之间的 Pauli 斥力决定的,碳-硫属元素平衡距离决定了这一点。因此,决定酰胺氢键供体能力的不是电负性,也不是通常所认为的极化率,而是硫属元素原子的空间大小。