Yang Lin, Ma Ji, Zheng Wenhao, Osella Silvio, Droste Jörn, Komber Hartmut, Liu Kun, Böckmann Steffen, Beljonne David, Hansen Michael Ryan, Bonn Mischa, Wang Hai I, Liu Junzhi, Feng Xinliang
Centre for Advancing Electronics Dresden (cfaed), Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany.
Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany.
Adv Sci (Weinh). 2022 Jul;9(19):e2200708. doi: 10.1002/advs.202200708. Epub 2022 Mar 24.
Curved graphene nanoribbons (GNRs) with hybrid edge structures have recently attracted increasing attention due to their unique band structures and electronic properties as a result of their nonplanar conformation. This work reports the solution synthesis of a long and curved multi-edged GNR (cMGNR) with unprecedented cove-armchair-gulf edge structures. The synthesis involves an efficient A B -type Diels-Alder polymerization between a diethynyl-substituted prefused bichrysene monomer (3b) and a dicyclopenta[e,l]pyrene-5,11-dione derivative (6) followed by FeCl -mediated Scholl oxidative cyclodehydrogenation of the obtained polyarylenes (P1). Model compounds 1a and 1b are first synthesized to examine the suitability and efficiency of the corresponding polymers for the Scholl reaction. The successful formation of cMGNR from polymer P1 bearing prefused bichrysene units is confirmed by FTIR, Raman, and solid-state NMR analyses. The cove-edge structure of the cMGNR imparts the ribbon with a unique nonplanar conformation as revealed by density functional theory (DFT) simulation, which effectively enhances its dispersibility in solution. The cMGNR has a narrow optical bandgap of 1.61 eV, as estimated from the UV-vis absorption spectrum, which is among the family of low-bandgap solution-synthesized GNRs. Moreover, the cMGNR exhibits a carrier mobility of ≈2 cm V s inferred from contact-free terahertz spectroscopy.
具有混合边缘结构的弯曲石墨烯纳米带(GNRs)由于其非平面构象所导致的独特能带结构和电子性质,近来受到了越来越多的关注。本文报道了一种具有前所未有的海湾 - 扶手椅 - 海湾边缘结构的长而弯曲的多边GNR(cMGNR)的溶液合成方法。该合成过程涉及二乙炔基取代的预稠合双并四苯单体(3b)与二环戊[e,l]芘 - 5,11 - 二酮衍生物(6)之间高效的AB型狄尔斯 - 阿尔德聚合反应,随后对所得聚亚芳基(P1)进行FeCl₃介导的肖尔氧化环脱氢反应。首先合成模型化合物1a和1b,以检验相应聚合物对肖尔反应的适用性和效率。通过傅里叶变换红外光谱(FTIR)、拉曼光谱和固态核磁共振(NMR)分析,证实了由带有预稠合双并四苯单元的聚合物P1成功形成了cMGNR。密度泛函理论(DFT)模拟表明,cMGNR的海湾边缘结构赋予纳米带独特 的非平面构象,这有效地增强了其在溶液中的分散性。根据紫外 - 可见吸收光谱估计,cMGNR的光学带隙较窄,为1.61 eV,属于低带隙溶液合成GNRs家族。此外,通过非接触太赫兹光谱推断,cMGNR的载流子迁移率约为2 cm² V⁻¹ s⁻¹ 。