纳米金刚石和等离子体纳米粒子的自组装用于纳米显微镜。
Self-Assembly of Nanodiamonds and Plasmonic Nanoparticles for Nanoscopy.
机构信息
Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland.
Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
出版信息
Biosensors (Basel). 2022 Feb 28;12(3):148. doi: 10.3390/bios12030148.
Nanodiamonds have emerged as promising agents for sensing and imaging due to their exceptional photostability and sensitivity to the local nanoscale environment. Here, we introduce a hybrid system composed of a nanodiamond containing nitrogen-vacancy center that is paired to a gold nanoparticle via DNA hybridization. Using multiphoton optical studies, we demonstrate that the harmonic mode emission generated in gold nanoparticles induces a coupled fluorescence emission in nanodiamonds. We show that the flickering of harmonic emission in gold nanoparticles directly influences the nanodiamonds' emissions, resulting in stochastic blinking. By utilizing the stochastic emission fluctuations, we present a proof-of-principle experiment to demonstrate the potential application of the hybrid system for super-resolution microscopy. The introduced system may find applications in intracellular biosensing and bioimaging due to the DNA-based coupling mechanism and also the attractive characteristics of harmonic generation, such as low power, low background and tissue transparency.
纳米金刚石由于其出色的光稳定性和对局部纳米环境的敏感性,已成为传感和成像的有前途的试剂。在这里,我们引入了一种混合系统,该系统由含有氮空位中心的纳米金刚石通过 DNA 杂交与金纳米颗粒配对组成。使用多光子光学研究,我们证明了在金纳米颗粒中产生的谐波模式发射诱导了纳米金刚石中的耦合荧光发射。我们表明,金纳米颗粒中谐波发射的闪烁直接影响纳米金刚石的发射,导致随机闪烁。通过利用随机发射波动,我们展示了一个原理验证实验,以证明该混合系统在超分辨率显微镜中的潜在应用。由于基于 DNA 的耦合机制以及谐波产生的低功率、低背景和组织透明等吸引人的特性,该引入的系统可能在细胞内生物传感和生物成像中有应用。