Guy Sylvain, Haberbusch Jean-Loup, Promayon Emmanuel, Mancini Stéphane, Voros Sandrine
University Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France.
University Grenoble Alpes, TIMA, 38031 Grenoble, France.
J Imaging. 2022 Feb 23;8(3):52. doi: 10.3390/jimaging8030052.
Multi-camera systems were recently introduced into laparoscopy to increase the narrow field of view of the surgeon. The video streams are stitched together to create a panorama that is easier for the surgeon to comprehend. Multi-camera prototypes for laparoscopy use quite basic algorithms and have only been evaluated on simple laparoscopic scenarios. The more recent state-of-the-art algorithms, mainly designed for the smartphone industry, have not yet been evaluated in laparoscopic conditions. We developed a simulated environment to generate a dataset of multi-view images displaying a wide range of laparoscopic situations, which is adaptable to any multi-camera system. We evaluated classical and state-of-the-art image stitching techniques used in non-medical applications on this dataset, including one unsupervised deep learning approach. We show that classical techniques that use global homography fail to provide a clinically satisfactory rendering and that even the most recent techniques, despite providing high quality panorama images in non-medical situations, may suffer from poor alignment or severe distortions in simulated laparoscopic scenarios. We highlight the main advantages and flaws of each algorithm within a laparoscopic context, identify the main remaining challenges that are specific to laparoscopy, and propose methods to improve these approaches. We provide public access to the simulated environment and dataset.
多摄像头系统最近被引入腹腔镜手术中,以扩大外科医生狭窄的视野。视频流被拼接在一起,以创建一个更便于外科医生理解的全景图。腹腔镜手术的多摄像头原型使用的算法相当基础,并且仅在简单的腹腔镜手术场景中进行过评估。主要为智能手机行业设计的最新的先进算法,尚未在腹腔镜手术条件下进行评估。我们开发了一个模拟环境,以生成一个显示各种腹腔镜手术情况的多视图图像数据集,该数据集适用于任何多摄像头系统。我们在这个数据集上评估了非医学应用中使用的经典和先进的图像拼接技术,包括一种无监督深度学习方法。我们表明,使用全局单应性的经典技术无法提供临床上令人满意的渲染效果,并且即使是最新的技术,尽管在非医学情况下能提供高质量的全景图像,但在模拟腹腔镜手术场景中可能会出现对齐不佳或严重失真的情况。我们强调了每种算法在腹腔镜手术背景下的主要优点和缺陷,确定了腹腔镜手术特有的主要剩余挑战,并提出了改进这些方法的途径。我们提供对模拟环境和数据集的公共访问。