Suppr超能文献

基于表位的肽疫苗设计和鉴定新型 SARS-CoV-2 3C 样蛋白酶化合物。

Epitope-based peptide vaccine design and elucidation of novel compounds against 3C like protein of SARS-CoV-2.

机构信息

Department of Biotechnology, University of Okara, Okara, Pakistan.

Department of Microbiology and Molecular Genetics, University of Okara, Okara, Pakistan.

出版信息

PLoS One. 2022 Mar 24;17(3):e0264700. doi: 10.1371/journal.pone.0264700. eCollection 2022.

Abstract

Coronaviruses (CoVs) are positive-stranded RNA viruses with short clubs on their edges. CoVs are pathogenic viruses that infect several animals and plant organisms, as well as humans (lethal respiratory dysfunctions). A noval strain of CoV has been reported and named as SARS-CoV-2. Numerous COVID-19 cases were being reported all over the World. COVID-19 and has a high mortality rate. In the present study, immunoinformatics techniques were utilized to predict the antigenic epitopes against 3C like protein. B-cell epitopes and Cytotoxic T-lymphocyte (CTL) were designed computationally against SARS-CoV-2. Multiple Sequence Alignment (MSA) of seven complete strains (HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1, SARS-CoV, MERS-CoV, and SARS-CoV-2) was performed to elucidate the binding domain and interacting residues. MHC-I binding epitopes were evaluated by analyzing the binding affinity of the top-ranked peptides having HLA molecule. By utilizing the docked complexes of CTL epitopes with antigenic sites, the binding relationship and affinity of top-ranked predicted peptides with the MHC-I HLA protein were investigated. The molecular docking analyses were conducted on the ZINC database library and twelve compounds having least binding energy were scrutinized. In conclusion, twelve CTL epitopes (GTDLEGNFY, TVNVLAWLY, GSVGFNIDY, SEDMLNPNY, LSQTGIAV, VLDMCASLK, LTQDHVDIL, TTLNDFNLV, CTSEDMLNP, TTITVNVLA, YNGSPSGVY, and SMQNCVLKL) were identified against SARS-CoV-2.

摘要

冠状病毒(CoV)是边缘带有短棒的正链 RNA 病毒。CoV 是致病病毒,可感染多种动物和植物生物体,以及人类(致命呼吸道功能障碍)。一种新型 CoV 已被报道并命名为 SARS-CoV-2。世界各地都有大量的 COVID-19 病例报告。COVID-19 具有很高的死亡率。在本研究中,利用免疫信息学技术预测了针对 3C 样蛋白的抗原表位。针对 SARS-CoV-2 计算机设计了 B 细胞表位和细胞毒性 T 淋巴细胞(CTL)。对 7 株完整株(HCoV-229E、HCoV-NL63、HCoV-OC43、HCoV-HKU1、SARS-CoV、MERS-CoV 和 SARS-CoV-2)进行了多序列比对(MSA),以阐明结合域和相互作用残基。通过分析具有 HLA 分子的 top 排名肽的结合亲和力,评估了 MHC-I 结合表位。利用 CTL 表位与抗原结合部位的对接复合物,研究了 top 排名预测肽与 MHC-I HLA 蛋白的结合关系和亲和力。分子对接分析在 ZINC 数据库库上进行,并仔细研究了具有最小结合能的 12 种化合物。总之,鉴定出了 12 个针对 SARS-CoV-2 的 CTL 表位(GTDLEGNFY、TVNVLAWLY、GSVGFNIDY、SEDMLNPNY、LSQTGIAV、VLDMCASLK、LTQDHVDIL、TTLNDFNLV、CTSEDMLNP、TTITVNVLA、YNGSPSGVY 和 SMQNCVLKL)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/333f/8947391/3671a49090a7/pone.0264700.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验