Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Medical and Population Genetics Program, the Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
Department of Biostatistics, School of Public Health, Yale University, New Haven, CT 06511, USA.
Am J Hum Genet. 2022 May 5;109(5):885-899. doi: 10.1016/j.ajhg.2022.03.004. Epub 2022 Mar 23.
Genome-wide association studies (GWASs) of Huntington disease (HD) have identified six DNA maintenance gene loci (among others) as modifiers and implicated a two step-mechanism of pathogenesis: somatic instability of the causative HTT CAG repeat with subsequent triggering of neuronal damage. The largest studies have been limited to HD individuals with a rater-estimated age at motor onset. To capitalize on the wealth of phenotypic data in several large HD natural history studies, we have performed algorithmic prediction by using common motor and cognitive measures to predict age at other disease landmarks as additional phenotypes for GWASs. Combined with imputation with the Trans-Omics for Precision Medicine reference panel, predictions using integrated measures provided objective landmark phenotypes with greater power to detect most modifier loci. Importantly, substantial differences in the relative modifier signal across loci, highlighted by comparing common modifiers at MSH3 and FAN1, revealed that individual modifier effects can act preferentially in the motor or cognitive domains. Individual components of the DNA maintenance modifier mechanisms may therefore act differentially on the neuronal circuits underlying the corresponding clinical measures. In addition, we identified additional modifier effects at the PMS1 and PMS2 loci and implicated a potential second locus on chromosome 7. These findings indicate that broadened discovery and characterization of HD genetic modifiers based on additional quantitative or qualitative phenotypes offers not only the promise of in-human validated therapeutic targets but also a route to dissecting the mechanisms and cell types involved in both the somatic instability and toxicity components of HD pathogenesis.
亨廷顿病 (HD) 的全基因组关联研究 (GWAS) 已经确定了六个 DNA 维持基因座(除其他外)作为修饰物,并暗示了发病机制的两步机制:致病 HTT CAG 重复的体细胞不稳定性,随后触发神经元损伤。最大的研究仅限于具有评分者估计运动起始年龄的 HD 个体。为了充分利用几个大型 HD 自然史研究中的丰富表型数据,我们通过使用常见的运动和认知测量来进行算法预测,以预测其他疾病标志物的年龄,作为 GWAS 的附加表型。与 Trans-Omics for Precision Medicine 参考面板的内插相结合,使用综合测量进行的预测提供了具有更大检测能力的客观地标表型,以检测大多数修饰基因座。重要的是,通过比较 MSH3 和 FAN1 上的常见修饰物,各个基因座之间的相对修饰信号存在显著差异,这表明个体修饰物效应可以优先在运动或认知领域起作用。因此,DNA 维持修饰机制的单个组件可能会对相应临床测量所基于的神经元回路产生不同的作用。此外,我们还在 PMS1 和 PMS2 基因座中鉴定到了其他修饰物效应,并暗示了 7 号染色体上的潜在第二个基因座。这些发现表明,基于其他定量或定性表型,扩大对 HD 遗传修饰物的发现和特征描述不仅有望提供经过人体验证的治疗靶点,而且还提供了一种方法来剖析亨廷顿病发病机制中体细胞不稳定性和毒性成分所涉及的机制和细胞类型。