Suppr超能文献

结构方程模型预测代谢综合征状态变化中各组成部分的相对贡献。

Structural Equation Modelling for Predicting the Relative Contribution of Each Component in the Metabolic Syndrome Status Change.

机构信息

Research Centre in Sports Sciences, Health and Human Development (CIDESD), 5001-801 Vila Real, Portugal.

Department of Sport Sciences, Instituto Politécnico de Bragança (IPB), 5300-253 Bragança, Portugal.

出版信息

Int J Environ Res Public Health. 2022 Mar 13;19(6):3384. doi: 10.3390/ijerph19063384.

Abstract

Understanding the factor weighting in the development of metabolic syndrome (MetS) may help to predict the progression for cardiovascular and metabolic diseases. Thus, the aim of this study was to develop a confirmatory model to describe and explain the direct and indirect effect of each component in MetS status change. A total of 3581 individuals diagnosed with MetS, aged 18−102 years, were selected between January 2019 and December 2020 from a community-representative sample of Portuguese adults in a north-eastern Portuguese region to test the model’s goodness of fit. A structural equation modelling (SEM) approach and a two-way ANOVA (age × body composition) were performed to compare the relative contribution of each MetS component using joint interim statement (JIS). Waist circumference (β = 0.189−0.373, p < 0.001), fasting glucose (β = 0.168−0.199, p < 0.001) and systolic blood pressure (β = 0.140−0.162, p < 0.001) had the highest direct effect on the change in MetS status in the overall population and concerning both sexes. Moreover, diastolic blood pressure (DBP), triglycerides (TG) and high-density lipoprotein cholesterol (HDL-c) had a low or non-significant effect. Additionally, an indirect effect was reported for age and body composition involving the change in MetS status. The findings may suggest that other components with higher specificity and sensitivity should be considered to empirically validate the harmonised definition of MetS. Current research provides the first multivariate model for predicting the relative contribution of each component in the MetS status change, specifically in Portuguese adults.

摘要

了解代谢综合征 (MetS) 发展过程中的因素权重有助于预测心血管和代谢疾病的进展。因此,本研究旨在建立一个验证模型来描述和解释 MetS 状态变化中每个成分的直接和间接影响。

2019 年 1 月至 2020 年 12 月,从葡萄牙东北部一个具有代表性的社区成年人样本中选择了 3581 名年龄在 18-102 岁之间的 MetS 患者,以测试模型的拟合优度。采用结构方程模型 (SEM) 方法和双向方差分析 (年龄×身体成分) ,使用联合临时声明 (JIS) 比较每个 MetS 成分的相对贡献。

腰围 (β=0.189-0.373,p<0.001)、空腹血糖 (β=0.168-0.199,p<0.001) 和收缩压 (β=0.140-0.162,p<0.001) 对总体人群和两性的 MetS 状态变化具有最高的直接影响。此外,舒张压 (DBP)、甘油三酯 (TG) 和高密度脂蛋白胆固醇 (HDL-c) 的影响较低或无统计学意义。

此外,还报告了年龄和身体成分对 MetS 状态变化的间接影响。这些发现表明,应该考虑其他具有更高特异性和敏感性的成分来实证验证 MetS 的协调定义。目前的研究提供了第一个用于预测每个成分在 MetS 状态变化中的相对贡献的多变量模型,特别是在葡萄牙成年人中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee15/8992136/4fc2f4e7858c/ijerph-19-03384-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验