Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, P. O. Box 9513, 2300 RA Leiden, The Netherlands.
Phys Chem Chem Phys. 2010 Oct 14;12(38):12065-76. doi: 10.1039/c0cp00250j. Epub 2010 Aug 9.
Water is the main component of interstellar ice mantles, is abundant in the solar system and is a crucial ingredient for life. The formation of this molecule in the interstellar medium cannot be explained by gas-phase chemistry only and its surface hydrogenation formation routes at low temperatures (O, O(2), O(3) channels) are still unclear and most likely incomplete. In a previous paper we discussed an unexpected zeroth-order H(2)O production behavior in O(2) ice hydrogenation experiments compared to the first-order H(2)CO and CH(3)OH production behavior found in former studies on hydrogenation of CO ice. In this paper we experimentally investigate in detail how the structure of O(2) ice leads to this rare behavior in reaction order and production yield. In our experiments H atoms are added to a thick O(2) ice under fully controlled conditions, while the changes are followed by means of reflection absorption infrared spectroscopy (RAIRS). The H-atom penetration mechanism is systematically studied by varying the temperature, thickness and structure of the O(2) ice. We conclude that the competition between reaction and diffusion of the H atoms into the O(2) ice explains the unexpected H(2)O and H(2)O(2) formation behavior. In addition, we show that the proposed O(2) hydrogenation scheme is incomplete, suggesting that additional surface reactions should be considered. Indeed, the detection of newly formed O(3) in the ice upon H-atom exposure proves that the O(2) channel is not an isolated route. Furthermore, the addition of H(2) molecules is found not to have a measurable effect on the O(2) reaction channel.
水是星际冰幔的主要成分,在太阳系中含量丰富,是生命的关键成分。这种分子在星际介质中的形成不能仅用气相化学来解释,其表面氢化形成途径(O、O(2)、O(3)通道)在低温下仍不清楚,而且很可能不完整。在之前的一篇论文中,我们讨论了在 O(2)冰氢化实验中与先前 CO 冰氢化实验中发现的第一级 H(2)CO 和 CH(3)OH 生产行为相比,H(2)O 产生的意外零级行为,在这篇论文中,我们详细实验研究了 O(2)冰的结构如何导致反应级数和产量产生这种罕见行为。在我们的实验中,在完全受控的条件下向厚 O(2)冰中添加 H 原子,同时通过反射吸收红外光谱(RAIRS)跟踪变化。通过改变 O(2)冰的温度、厚度和结构,系统地研究了 H 原子的穿透机制。我们得出结论,反应和 H 原子扩散进入 O(2)冰的竞争解释了 H(2)O 和 H(2)O(2)形成行为的意外性。此外,我们还表明,所提出的 O(2)氢化方案不完整,表明应该考虑其他表面反应。事实上,在 H 原子暴露于冰中时检测到新形成的 O(3)证明 O(2)通道不是孤立的途径。此外,还发现添加 H(2)分子对 O(2)反应通道没有可测量的影响。