Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849-5518
Delaware Center for Neuroscience, Delaware State University, Dover, Delaware 19901.
J Neurosci. 2022 May 4;42(18):3749-3767. doi: 10.1523/JNEUROSCI.1506-21.2022. Epub 2022 Mar 24.
The neural circuits that support human cognition are a topic of enduring interest. Yet, there are limited tools available to map brain circuits in the human and nonhuman primate brain. We harnessed high-resolution diffusion MR tractography, anatomic, and transcriptomic data from individuals of either sex to investigate the evolution and development of frontal cortex circuitry. We applied machine learning to RNA sequencing data to find corresponding ages between humans and macaques and to compare the development of circuits across species. We transcriptionally defined neural circuits by testing for associations between gene expression and white matter maturation. We then considered transcriptional and structural growth to test whether frontal cortex circuit maturation is unusually extended in humans relative to other species. We also considered gene expression and high-resolution diffusion MR tractography of adult brains to test for cross-species variation in frontal cortex circuits. We found that frontal cortex circuitry development is extended in primates, and concomitant with an expansion in corticocortical pathways compared with mice in adulthood. Importantly, we found that these parameters varied relatively little across humans and studied primates. These data identify a surprising collection of conserved features in frontal cortex circuits across humans and Old World monkeys. Our work demonstrates that integrating transcriptional and structural data across temporal dimensions is a robust approach to trace the evolution of brain pathways in primates. Diffusion MR tractography is an exciting method to explore pathways, but there are uncertainties in the accuracy of reconstructed tracts. We broaden the repertoire of toolkits to enhance our ability to trace human brain pathways from diffusion MR tractography. Our integrative approach finds corresponding ages across species and transcriptionally defines neural circuits. We used this information to test for variation in circuit maturation across species and found a surprising constellation of similar features in frontal cortex neural circuits across humans and primates. Integrating across scales of biological organization expands the repertoire of tools available to study pathways in primates, which opens new avenues to study pathways in health and diseases of the human brain.
支持人类认知的神经回路是一个持久的研究课题。然而,目前用于绘制人类和非人灵长类动物大脑回路的工具有限。我们利用高分辨率弥散磁共振束追踪技术、来自任意性别的个体的解剖和转录组学数据,研究了额皮质回路的进化和发育。我们应用机器学习对 RNA 测序数据进行分析,以找到人类和猕猴之间对应的年龄,并比较跨物种的回路发育。我们通过测试基因表达与白质成熟之间的关联来对神经回路进行转录定义。然后,我们考虑转录和结构生长,以测试额皮质回路成熟是否相对于其他物种在人类中异常延长。我们还考虑了成年大脑的基因表达和高分辨率弥散磁共振束追踪,以测试额皮质回路在跨物种中的变化。我们发现,额皮质回路的发育在灵长类动物中是延长的,与成年小鼠相比,皮质皮质通路也有扩张。重要的是,我们发现这些参数在人类和研究的灵长类动物中相对变化不大。这些数据在人类和旧世界猴中确定了额皮质回路的一组令人惊讶的保守特征。我们的工作表明,跨时间维度整合转录和结构数据是追踪灵长类动物大脑通路进化的一种稳健方法。弥散磁共振束追踪是一种探索通路的令人兴奋的方法,但在重建轨迹的准确性方面存在不确定性。我们拓宽了工具包的范围,以提高我们从弥散磁共振束追踪中追踪人类大脑通路的能力。我们的综合方法在跨物种中找到了对应的年龄,并在转录上定义了神经回路。我们利用这些信息来测试跨物种的回路成熟度,发现人类和灵长类动物的额皮质神经回路中存在令人惊讶的相似特征。跨生物组织尺度的整合扩大了研究灵长类动物通路的工具包,为研究人类大脑在健康和疾病中的通路开辟了新途径。