Rekowska Natalia, Huling Jennifer, Brietzke Andreas, Arbeiter Daniela, Eickner Thomas, Konasch Jan, Riess Alexander, Mau Robert, Seitz Hermann, Grabow Niels, Teske Michael
Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany.
Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany.
Pharmaceutics. 2022 Mar 12;14(3):628. doi: 10.3390/pharmaceutics14030628.
Novel fabrication techniques based on photopolymerization enable the preparation of complex multi-material constructs for biomedical applications. This requires an understanding of the influence of the used reaction components on the properties of the generated copolymers. The identification of fundamental characteristics of these copolymers is necessary to evaluate their potential for biomaterial applications. Additionally, knowledge of the properties of the starting materials enables subsequent tailoring of the biomaterials to meet individual implantation needs. In our study, we have analyzed the biological, chemical, mechanical and thermal properties of photopolymerized poly(ethyleneglycol) diacrylate (PEGDA) and specific copolymers with different photoinitiator (PI) concentrations before and after applying a post treatment washing process. As comonomers, 1,3-butanediol diacrylate, pentaerythritol triacrylate and pentaerythritol tetraacrylate were used. The in vitro studies confirm the biocompatibility of all investigated copolymers. Uniaxial tensile tests show significantly lower tensile strength (82% decrease) and elongation at break (76% decrease) values for washed samples. Altered tensile strength is also observed for different PI concentrations: on average, 6.2 MPa for 1.25% PI and 3.1 MPa for 0.5% PI. The addition of comonomers lowers elongation at break on average by 45%. Moreover, our observations show glass transition temperatures (T) ranging from 27 °C to 56 °C, which significantly increase with higher comonomer content. These results confirm the ability to generate biocompatible PEGDA copolymers with specific thermal and mechanical properties. These can be considered as resins for various additive manufacturing-based applications to obtain personalized medical devices, such as drug delivery systems (DDS). Therefore, our study has advanced the understanding of PEGDA multi-materials and will contribute to the future development of tools ensuring safe and effective individual therapy for patients.
基于光聚合的新型制造技术能够制备用于生物医学应用的复杂多材料构建体。这需要了解所用反应组分对生成的共聚物性能的影响。识别这些共聚物的基本特性对于评估它们在生物材料应用中的潜力是必要的。此外,了解起始材料的特性有助于随后对生物材料进行定制,以满足个体植入需求。在我们的研究中,我们分析了光聚合聚乙二醇二丙烯酸酯(PEGDA)以及含有不同光引发剂(PI)浓度的特定共聚物在进行后处理洗涤过程前后的生物学、化学、机械和热性能。作为共聚单体,使用了1,3 - 丁二醇二丙烯酸酯、季戊四醇三丙烯酸酯和季戊四醇四丙烯酸酯。体外研究证实了所有研究的共聚物的生物相容性。单轴拉伸试验表明,洗涤后的样品的拉伸强度(降低82%)和断裂伸长率(降低76%)值显著更低。对于不同的PI浓度也观察到拉伸强度的变化:对于1.25%的PI,平均为6.2 MPa,对于0.5%的PI,平均为3.1 MPa。共聚单体的添加平均使断裂伸长率降低45%。此外,我们的观察结果表明玻璃化转变温度(T)范围为27℃至56℃,随着共聚单体含量的增加而显著升高。这些结果证实了能够生成具有特定热性能和机械性能的生物相容性PEGDA共聚物。这些共聚物可被视为用于各种基于增材制造的应用的树脂,以获得个性化医疗设备,如药物递送系统(DDS)。因此,我们的研究增进了对PEGDA多材料的理解,并将有助于未来开发确保为患者提供安全有效个体治疗的工具。