Liu Tan, Chen Zhihui, Xiao Yunhua, Yuan Mingmin, Zhou Chenkai, Liu Gang, Fang Jun, Yang Bo
Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410125, China.
Microorganisms. 2022 Mar 5;10(3):566. doi: 10.3390/microorganisms10030566.
Oleaginous microalgae have been considered promising sources of biodiesel due to their high lipid content. Nitrogen limitation/starvation is one of the most prominent strategies to induce lipid accumulation in microalgae. Nonetheless, despite numerous studies, the mechanism underlying this approach is not well understood. The aim of this study was to investigate the effect of nitrogen limitation and starvation on biochemical and morphological changes in the microalga Chlorella vulgaris FACHB-1068, thereby obtaining the optimal nitrogen stress strategy for maximizing the lipid productivity of microalgal biomass. The results showed that nitrogen limitation (nitrate concentration < 21.66 mg/L) and starvation enhanced the lipid content but generally decreased the biomass productivity, pigment concentration, and protein content in algal cells. Comparatively, 3-day nitrogen starvation was found to be a more suitable strategy to produce lipid-rich biomass. It resulted in an increased biomass production and satisfactory lipid content of 266 mg/L and 31.33%, respectively. Besides, nitrogen starvation caused significant changes in cell morphology, with an increase in numbers and total size of lipid droplets and starch granules. Under nitrogen starvation, saturated fatty acids (C-16:0, C-20:0, and C-18:0) accounted for the majority of the total fatty acids (~80%), making C. vulgaris FACHB-1068 a potential feedstock for biodiesel production. Our work may contribute to a better understanding of the biochemical and morphological changes in microalgae under nitrogen stress. Besides, our work may provide valuable information on increasing the lipid productivity of oleaginous microalgae by regulating nitrogen supply.
由于含油量高,产油微藻被认为是很有前景的生物柴油来源。氮限制/饥饿是诱导微藻脂质积累的最显著策略之一。然而,尽管有大量研究,但这种方法的潜在机制仍未得到充分理解。本研究的目的是调查氮限制和饥饿对普通小球藻FACHB - 1068生化和形态变化的影响,从而获得使微藻生物质脂质生产率最大化的最佳氮胁迫策略。结果表明,氮限制(硝酸盐浓度<21.66 mg/L)和饥饿提高了脂质含量,但通常会降低藻类细胞的生物质生产率、色素浓度和蛋白质含量。相比之下,3天的氮饥饿被发现是生产富含脂质生物质的更合适策略。它导致生物质产量增加,脂质含量分别达到令人满意的266 mg/L和31.33%。此外,氮饥饿导致细胞形态发生显著变化,脂质滴和淀粉粒的数量和总体积增加。在氮饥饿条件下,饱和脂肪酸(C - 16:0、C - 20:0和C - 18:0)占总脂肪酸的大部分(约80%),使普通小球藻FACHB - 1068成为生物柴油生产的潜在原料。我们的工作可能有助于更好地理解微藻在氮胁迫下的生化和形态变化。此外,我们的工作可能为通过调节氮供应提高产油微藻的脂质生产率提供有价值的信息。