Suppr超能文献

基于相关滤波的自动驾驶车辆多目标跟踪。

Multi-Object Tracking with Correlation Filter for Autonomous Vehicle.

机构信息

College of Artificial Intelligence, National University of Defense Technology, Changsha 410073, China.

National Innovation Institute of Defense Technology, Beijing 100091, China.

出版信息

Sensors (Basel). 2018 Jun 22;18(7):2004. doi: 10.3390/s18072004.

Abstract

Multi-object tracking is a crucial problem for autonomous vehicle. Most state-of-the-art approaches adopt the tracking-by-detection strategy, which is a two-step procedure consisting of the detection module and the tracking module. In this paper, we improve both steps. We improve the detection module by incorporating the temporal information, which is beneficial for detecting small objects. For the tracking module, we propose a novel compressed deep Convolutional Neural Network (CNN) feature based Correlation Filter tracker. By carefully integrating these two modules, the proposed multi-object tracking approach has the ability of re-identification (ReID) once the tracked object gets lost. Extensive experiments were performed on the KITTI and MOT2015 tracking benchmarks. Results indicate that our approach outperforms most state-of-the-art tracking approaches.

摘要

多目标跟踪是自动驾驶的一个关键问题。大多数最先进的方法采用基于检测的跟踪策略,该策略由检测模块和跟踪模块组成。在本文中,我们改进了这两个步骤。我们通过引入时间信息来改进检测模块,这有利于检测小目标。对于跟踪模块,我们提出了一种新颖的基于压缩深度卷积神经网络(CNN)特征的相关滤波器跟踪器。通过仔细整合这两个模块,所提出的多目标跟踪方法在跟踪目标丢失后具有重新识别(ReID)的能力。我们在 KITTI 和 MOT2015 跟踪基准上进行了广泛的实验。结果表明,我们的方法优于大多数最先进的跟踪方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/837a/6068606/40e68dbaf86d/sensors-18-02004-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验