Suppr超能文献

建立用于模拟葡萄树结构的随机模型:以考虑高浓度二氧化碳影响的数字化雷司令葡萄树为例

Towards a Stochastic Model to Simulate Grapevine Architecture: A Case Study on Digitized Riesling Vines Considering Effects of Elevated CO.

作者信息

Schmidt Dominik, Kahlen Katrin, Bahr Christopher, Friedel Matthias

机构信息

Department of Modeling and Systems Analysis, Hochschule Geisenheim University, 65366 Geisenheim, Germany.

Department of General and Organic Viticulture, Hochschule Geisenheim University, 65366 Geisenheim, Germany.

出版信息

Plants (Basel). 2022 Mar 17;11(6):801. doi: 10.3390/plants11060801.

Abstract

Modeling plant growth, in particular with functional-structural plant models, can provide tools to study impacts of changing environments in silico. Simulation studies can be used as pilot studies for reducing the on-field experimental effort when predictive capabilities are given. Robust model calibration leads to less fragile predictions, while introducing uncertainties in predictions allows accounting for natural variability, resulting in stochastic plant growth models. In this study, stochastic model components that can be implemented into the functional-structural plant model Virtual Riesling are developed relying on Bayesian model calibration with the goal to enhance the model towards a fully stochastic model. In this first step, model development targeting phenology, in particular budburst variability, phytomer development rate and internode growth are presented in detail. Multi-objective optimization is applied to estimate a single set of cardinal temperatures, which is used in phenology and growth modeling based on a development days approach. Measurements from two seasons of grapevines grown in a vineyard with free-air carbon dioxide enrichment (FACE) are used; thus, model building and selection are coupled with an investigation as to whether including effects of elevated CO2 conditions to be expected in 2050 would improve the models. The results show how natural variability complicates the detection of possible treatment effects, but demonstrate that Bayesian calibration in combination with mixed models can realistically recover natural shoot growth variability in predictions. We expect these and further stochastic model extensions to result in more realistic virtual plant simulations to study effects, which are used to conduct in silico studies of canopy microclimate and its effects on grape health and quality.

摘要

对植物生长进行建模,尤其是使用功能-结构植物模型,可以提供在计算机上研究环境变化影响的工具。当具备预测能力时,模拟研究可作为初步研究,以减少田间实验工作量。稳健的模型校准可使预测结果更可靠,而在预测中引入不确定性则可考虑自然变异性,从而产生随机植物生长模型。在本研究中,基于贝叶斯模型校准开发了可应用于功能-结构植物模型Virtual Riesling的随机模型组件,目标是将该模型提升为完全随机模型。在第一步中,详细介绍了针对物候学,特别是芽萌发变异性、节间发育速率和节间生长的模型开发。应用多目标优化来估计一组单一的基点温度,该温度用于基于发育天数方法的物候学和生长建模。使用了在一个进行自由空气二氧化碳富集(FACE)的葡萄园里种植的两个季节葡萄的测量数据;因此,模型构建和选择与一项关于纳入2050年预期的二氧化碳浓度升高影响是否会改进模型的调查相结合。结果表明自然变异性如何使检测可能的处理效果变得复杂,但证明了贝叶斯校准与混合模型相结合能够在预测中切实再现自然新梢生长变异性。我们期望这些以及进一步的随机模型扩展能够产生更逼真的虚拟植物模拟,以研究相关效应,这些效应可用于对冠层微气候及其对葡萄健康和品质的影响进行计算机模拟研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88bd/8953974/e740c65676ce/plants-11-00801-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验