Committeri Umberto, Fusco Roberta, Di Bernardo Elio, Abbate Vincenzo, Salzano Giovanni, Maglitto Fabio, Dell'Aversana Orabona Giovanni, Piombino Pasquale, Bonavolontà Paola, Arena Antonio, Perri Francesco, Maglione Maria Grazia, Setola Sergio Venanzio, Granata Vincenza, Iaconetta Giorgio, Ionna Franco, Petrillo Antonella, Califano Luigi
Maxillofacial Surgery Operative Unit, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University of Naples, 80131 Naples, Italy.
Medical Oncology Division, Igea SpA, 80013 Naples, Italy.
Biology (Basel). 2022 Mar 18;11(3):468. doi: 10.3390/biology11030468.
Objective: To predict the risk of metastatic lymph nodes and the tumor grading related to oral tongue squamous cell carcinoma (OTSCC) through the combination of clinical data with radiomics metrics by computed tomography, and to develop a supportive approach in the management of the lymphatic cervical areas, with particular attention to the early stages (T1−T2). Between March 2016 and February 2020, patients with histologically confirmed OTSCC, treated by partial glossectomy and ipsilateral laterocervical lymphadenectomy and subjected to computed tomography (CT) before surgery, were identified by two centers: 81 patients (49 female and 32 male) with 58 years as the median age (range 19−86 years). Univariate analysis with non-parametric tests and multivariate analysis with machine learning approaches were used. Clinical, hematological parameters and radiological features extracted by CT were considered individually and in combination. All clinical parameters showed statistically significant differences (p < 0.05) for the Kruskal−Wallis test when discriminating both the tumor grading and the metastatic lymph nodes. DOI, PLR, SII, and SIRI showed an accuracy of 0.70 (ROC analysis) when identifying the tumor grading, while an accuracy ≥ 0.78 was shown by DOI, NLR, PLR, SII, and SIRI when discriminating metastatic lymph nodes. In the context of the analysis of radiomics metrics, the original_glszm_HighGrayLevelZoneEmphasis feature was selected for identifying the tumor grading (accuracy of 0.70), while the wavelet_HHH_glrlm_LowGrayLevelRunEmphasis predictor was selected for determining metastatic lymph nodes (accuracy of 0.96). Remarkable findings were also obtained when classifying patients with a machine learning approach. Radiomics features alone can predict tumor grading with an accuracy of 0.76 using a logistic regression model, while an accuracy of 0.82 can be obtained by running a CART algorithm through a combination of three clinical parameters (SIRI, DOI, and PLR) with a radiomics feature (wavelet_LLL_glszm_SizeZoneNonUniformityNormalized). In the context of predicting metastatic lymph nodes, an accuracy of 0.94 was obtained using 15 radiomics features in a logistic regression model, while both CART and CIDT achieved an asymptotic accuracy value of 1.00 using only one radiomics feature. Radiomics features and clinical parameters have an important role in identifying tumor grading and metastatic lymph nodes. Machine learning approaches can be used as an easy-to-use tool to stratify patients with early-stage OTSCC, based on the identification of metastatic and non-metastatic lymph nodes.
通过将临床数据与计算机断层扫描的放射组学指标相结合,预测口腔舌鳞状细胞癌(OTSCC)的转移性淋巴结风险和肿瘤分级,并开发一种在颈部淋巴区域管理中的支持性方法,尤其关注早期阶段(T1−T2)。2016年3月至2020年2月期间,两个中心确定了经组织学确诊为OTSCC、接受部分舌切除术和同侧颈侧淋巴结清扫术且术前接受计算机断层扫描(CT)的患者:81例患者(49例女性和32例男性),中位年龄为58岁(范围19−86岁)。采用非参数检验进行单变量分析,并使用机器学习方法进行多变量分析。单独及联合考虑CT提取的临床、血液学参数和放射学特征。在区分肿瘤分级和转移性淋巴结时,所有临床参数在Kruskal−Wallis检验中均显示出统计学显著差异(p < 0.05)。在识别肿瘤分级时,DOI、PLR、SII和SIRI的准确率为0.70(ROC分析),而在区分转移性淋巴结时,DOI、NLR、PLR、SII和SIRI的准确率≥0.78。在放射组学指标分析中,选择original_glszm_HighGrayLevelZoneEmphasis特征来识别肿瘤分级(准确率为0.70),而选择wavelet_HHH_glrlm_LowGrayLevelRunEmphasis预测因子来确定转移性淋巴结(准确率为0.96)。在使用机器学习方法对患者进行分类时也获得了显著结果。仅使用放射组学特征,通过逻辑回归模型预测肿瘤分级的准确率为0.76,而通过将三个临床参数(SIRI、DOI和PLR)与一个放射组学特征(wavelet_LLL_glszm_SizeZoneNonUniformityNormalized)相结合运行CART算法,准确率可达0.82。在预测转移性淋巴结方面,在逻辑回归模型中使用15个放射组学特征的准确率为0.94,而CART和CIDT仅使用一个放射组学特征时均达到了渐近准确率值1.00。放射组学特征和临床参数在识别肿瘤分级和转移性淋巴结方面具有重要作用。机器学习方法可作为一种易于使用的工具,基于转移性和非转移性淋巴结的识别对早期OTSCC患者进行分层。