Suppr超能文献

多模态严重急性呼吸综合征冠状病毒2相互作用组描绘了病毒-宿主空间组织。

Multimodal SARS-CoV-2 interactome sketches the virus-host spatial organization.

作者信息

Dugied Guillaume, Laurent Estelle Mn, Attia Mikaël, Gimeno Jean-Pascal, Bachiri Kamel, Samavarchi-Tehrani Payman, Donati Flora, Rahou Yannis, Munier Sandie, Amara Faustine, Dos Santos Mélanie, Soler Nicolas, Volant Stevenn, Pietrosemoli Natalia, Gingras Anne-Claude, Pavlopoulos Georgios A, van der Werf Sylvie, Falter-Braun Pascal, Aloy Patrick, Jacob Yves, Komarova Anastassia, Sofianatos Yorgos, Coyaud Etienne, Demeret Caroline

机构信息

Institut Pasteur, Université Paris Cité, UMR 3569, Centre National de la Recherche Scientifique, Molecular Genetics of RNA Viruses, 28 rue du Docteur Roux, F-75015, Paris, France.

Institut Pasteur, Université Paris Cité, Interactomics, RNA and Immunity, 28 rue du Docteur Roux, F-75015, Paris, France.

出版信息

Commun Biol. 2025 Mar 26;8(1):501. doi: 10.1038/s42003-025-07933-z.

Abstract

An accurate spatial representation of protein-protein interaction networks is needed to achieve a realistic and biologically relevant representation of interactomes. Here, we leveraged the spatial information included in Proximity-Dependent Biotin Identification (BioID) interactomes of SARS-CoV-2 proteins to calculate weighted distances and model the organization of the SARS-CoV-2-human interactome in three dimensions (3D) within a cell-like volume. Cell regions with viral occupancy were highlighted, along with the coordination of viral proteins exploiting the cellular machinery. Profiling physical intra-virus and virus-host contacts enabled us to demonstrate both the accuracy and the predictive value of our 3D map for direct interactions, meaning that proteins in closer proximity tend to interact physically. Several functionally important virus-host complexes were detected, and robust structural models were obtained, opening the way to structure-directed drug discovery screens. This PPI discovery pipeline approach brings us closer to a realistic spatial representation of interactomes, which, when applied to viruses or other pathogens, can provide significant information for infection. Thus, it represents a promising tool for coping with emerging infectious diseases.

摘要

为了实现相互作用组的真实且具有生物学相关性的表示,需要蛋白质-蛋白质相互作用网络的精确空间表示。在此,我们利用严重急性呼吸综合征冠状病毒2(SARS-CoV-2)蛋白质的邻近依赖性生物素识别(BioID)相互作用组中包含的空间信息,来计算加权距离,并在类似细胞的体积内对SARS-CoV-2-人类相互作用组的三维(3D)组织进行建模。突出显示了具有病毒占据的细胞区域,以及利用细胞机制的病毒蛋白的协同作用。对病毒内部和病毒-宿主的物理接触进行分析,使我们能够证明我们的3D图谱对于直接相互作用的准确性和预测价值,这意味着距离更近的蛋白质往往会发生物理相互作用。检测到了几种功能重要的病毒-宿主复合物,并获得了可靠的结构模型,为基于结构的药物发现筛选开辟了道路。这种蛋白质-蛋白质相互作用发现管道方法使我们更接近相互作用组的真实空间表示,当应用于病毒或其他病原体时,可为感染提供重要信息。因此,它是应对新兴传染病的一种有前途的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4799/11947133/077f422e35b2/42003_2025_7933_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验