Suppr超能文献

利用机器学习识别欧洲 COVID-19 传播的国家层面风险因素。

Identifying Country-Level Risk Factors for the Spread of COVID-19 in Europe Using Machine Learning.

机构信息

AIDEAS OÜ, Narva mnt 5, 10117 Tallinn, Estonia.

Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece.

出版信息

Viruses. 2022 Mar 17;14(3):625. doi: 10.3390/v14030625.

Abstract

Coronavirus disease 2019 (COVID-19) has resulted in approximately 5 million deaths around the world with unprecedented consequences in people's daily routines and in the global economy. Despite vast increases in time and money spent on COVID-19-related research, there is still limited information about the factors at the country level that affected COVID-19 transmission and fatality in EU. The paper focuses on the identification of these risk factors using a machine learning (ML) predictive pipeline and an associated explainability analysis. To achieve this, a hybrid dataset was created employing publicly available sources comprising heterogeneous parameters from the majority of EU countries, e.g., mobility measures, policy responses, vaccinations, and demographics/generic country-level parameters. Data pre-processing and data exploration techniques were initially applied to normalize the available data and decrease the feature dimensionality of the data problem considered. Then, a linear ε-Support Vector Machine (ε-SVM) model was employed to implement the regression task of predicting the number of deaths for each one of the three first pandemic waves (with mean square error of 0.027 for wave 1 and less than 0.02 for waves 2 and 3). Post hoc explainability analysis was finally applied to uncover the rationale behind the decision-making mechanisms of the ML pipeline and thus enhance our understanding with respect to the contribution of the selected country-level parameters to the prediction of COVID-19 deaths in EU.

摘要

2019 年冠状病毒病(COVID-19)在全球范围内导致约 500 万人死亡,对人们的日常生活和全球经济造成了前所未有的影响。尽管在 COVID-19 相关研究上投入了大量的时间和资金,但对于影响欧盟 COVID-19 传播和死亡率的国家层面因素仍知之甚少。本文使用机器学习(ML)预测管道和相关的可解释性分析来重点研究这些风险因素。为了实现这一目标,创建了一个混合数据集,利用公开来源,包括来自大多数欧盟国家的异构参数,例如流动性措施、政策应对措施、疫苗接种和人口统计学/通用国家层面参数。最初应用数据预处理和数据探索技术来标准化可用数据并降低所考虑的数据问题的特征维度。然后,采用线性ε-支持向量机(ε-SVM)模型来实现预测三个第一波大流行中的每一波死亡人数的回归任务(第一波的均方误差为 0.027,第二波和第三波的均方误差小于 0.02)。最后,进行事后可解释性分析,以揭示 ML 管道决策机制的基本原理,从而提高我们对所选国家层面参数对欧盟 COVID-19 死亡预测的贡献的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f33/8955542/af69ab553cf2/viruses-14-00625-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验