Suppr超能文献

可解释的机器学习用于预测重症通气患者的长期死亡率:台湾中部的一项回顾性研究

Explainable machine learning to predict long-term mortality in critically ill ventilated patients: a retrospective study in central Taiwan.

作者信息

Chan Ming-Cheng, Pai Kai-Chih, Su Shao-An, Wang Min-Shian, Wu Chieh-Liang, Chao Wen-Cheng

机构信息

Division of Critical Care and Respiratory Therapy, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.

College of Science, Tunghai University, Taichung, Taiwan.

出版信息

BMC Med Inform Decis Mak. 2022 Mar 25;22(1):75. doi: 10.1186/s12911-022-01817-6.

Abstract

BACKGROUND

Machine learning (ML) model is increasingly used to predict short-term outcome in critically ill patients, but the study for long-term outcome is sparse. We used explainable ML approach to establish 30-day, 90-day and 1-year mortality prediction model in critically ill ventilated patients.

METHODS

We retrospectively included patients who were admitted to intensive care units during 2015-2018 at a tertiary hospital in central Taiwan and linked with the Taiwanese nationwide death registration data. Three ML models, including extreme gradient boosting (XGBoost), random forest (RF) and logistic regression (LR), were used to establish mortality prediction model. Furthermore, we used feature importance, Shapley Additive exPlanations (SHAP) plot, partial dependence plot (PDP), and local interpretable model-agnostic explanations (LIME) to explain the established model.

RESULTS

We enrolled 6994 patients and found the accuracy was similar among the three ML models, and the area under the curve value of using XGBoost to predict 30-day, 90-day and 1-year mortality were 0.858, 0.839 and 0.816, respectively. The calibration curve and decision curve analysis further demonstrated accuracy and applicability of models. SHAP summary plot and PDP plot illustrated the discriminative point of APACHE (acute physiology and chronic health exam) II score, haemoglobin and albumin to predict 1-year mortality. The application of LIME and SHAP force plots quantified the probability of 1-year mortality and algorithm of key features at individual patient level.

CONCLUSIONS

We used an explainable ML approach, mainly XGBoost, SHAP and LIME plots to establish an explainable 1-year mortality prediction ML model in critically ill ventilated patients.

摘要

背景

机器学习(ML)模型越来越多地用于预测危重症患者的短期预后,但关于长期预后的研究较少。我们采用可解释的机器学习方法,为接受机械通气的危重症患者建立30天、90天和1年死亡率预测模型。

方法

我们回顾性纳入了2015年至2018年期间在台湾中部一家三级医院重症监护病房住院的患者,并与台湾全国死亡登记数据相关联。使用三种机器学习模型,包括极端梯度提升(XGBoost)、随机森林(RF)和逻辑回归(LR),建立死亡率预测模型。此外,我们使用特征重要性、夏普利值加法解释(SHAP)图、部分依赖图(PDP)和局部可解释模型无关解释(LIME)来解释所建立的模型。

结果

我们纳入了6994例患者,发现三种机器学习模型的准确率相似,使用XGBoost预测30天、90天和1年死亡率的曲线下面积值分别为0.858、0.839和0.816。校准曲线和决策曲线分析进一步证明了模型的准确性和适用性。SHAP汇总图和PDP图说明了急性生理与慢性健康状况评估(APACHE)II评分、血红蛋白和白蛋白对预测1年死亡率的判别点。LIME和SHAP力场图的应用在个体患者层面量化了1年死亡率的概率和关键特征的算法。

结论

我们采用了一种可解释的机器学习方法,主要是XGBoost、SHAP和LIME图,为接受机械通气的危重症患者建立了一个可解释的1年死亡率预测机器学习模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee27/8957161/61a27c83285e/12911_2022_1817_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验