Lin Ming-Yen, Li Chi-Chun, Lin Pin-Hsiu, Wang Jiun-Long, Chan Ming-Cheng, Wu Chieh-Liang, Chao Wen-Cheng
Department of Information Engineering and Computer Science, Feng Chia University, Taichung, Taiwan.
Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.
Front Med (Lausanne). 2021 Apr 23;8:663739. doi: 10.3389/fmed.2021.663739. eCollection 2021.
The number of patients requiring prolonged mechanical ventilation (PMV) is increasing worldwide, but the weaning outcome prediction model in these patients is still lacking. We hence aimed to develop an explainable machine learning (ML) model to predict successful weaning in patients requiring PMV using a real-world dataset. This retrospective study used the electronic medical records of patients admitted to a 12-bed respiratory care center in central Taiwan between 2013 and 2018. We used three ML models, namely, extreme gradient boosting (XGBoost), random forest (RF), and logistic regression (LR), to establish the prediction model. We further illustrated the feature importance categorized by clinical domains and provided visualized interpretation by using SHapley Additive exPlanations (SHAP) as well as local interpretable model-agnostic explanations (LIME). The dataset contained data of 963 patients requiring PMV, and 56.0% (539/963) of them were successfully weaned from mechanical ventilation. The XGBoost model (area under the curve [AUC]: 0.908; 95% confidence interval [CI] 0.864-0.943) and RF model (AUC: 0.888; 95% CI 0.844-0.934) outperformed the LR model (AUC: 0.762; 95% CI 0.687-0.830) in predicting successful weaning in patients requiring PMV. To give the physician an intuitive understanding of the model, we stratified the feature importance by clinical domains. The cumulative feature importance in the ventilation domain, fluid domain, physiology domain, and laboratory data domain was 0.310, 0.201, 0.265, and 0.182, respectively. We further used the SHAP plot and partial dependence plot to illustrate associations between features and the weaning outcome at the feature level. Moreover, we used LIME plots to illustrate the prediction model at the individual level. Additionally, we addressed the weekly performance of the three ML models and found that the accuracy of XGBoost/RF was ~0.7 between weeks 4 and week 7 and slightly declined to 0.6 on weeks 8 and 9. We used an ML approach, mainly XGBoost, SHAP plot, and LIME plot to establish an explainable weaning prediction ML model in patients requiring PMV. We believe these approaches should largely mitigate the concern of the black-box issue of artificial intelligence, and future studies are warranted for the landing of the proposed model.
全球范围内,需要长期机械通气(PMV)的患者数量正在增加,但此类患者的撤机结果预测模型仍很缺乏。因此,我们旨在开发一种可解释的机器学习(ML)模型,使用真实世界数据集预测需要PMV的患者成功撤机情况。这项回顾性研究使用了2013年至2018年期间入住台湾中部一家拥有12张床位的呼吸护理中心的患者的电子病历。我们使用了三种ML模型,即极端梯度提升(XGBoost)、随机森林(RF)和逻辑回归(LR)来建立预测模型。我们进一步按临床领域对特征重要性进行了分类说明,并使用Shapley加性解释(SHAP)以及局部可解释模型无关解释(LIME)提供了可视化解释。该数据集包含963例需要PMV的患者的数据,其中56.0%(539/963)成功撤机。在预测需要PMV的患者成功撤机方面,XGBoost模型(曲线下面积[AUC]:0.908;95%置信区间[CI] 0.864 - 0.943)和RF模型(AUC:0.888;95% CI 0.844 - 0.934)优于LR模型(AUC:0.762;95% CI 0.687 - 0.830)。为了让医生对模型有直观的理解,我们按临床领域对特征重要性进行了分层。通气领域、液体领域、生理领域和实验室数据领域的累积特征重要性分别为0.310、0.201、0.265和0.182。我们进一步使用SHAP图和部分依赖图在特征层面说明了特征与撤机结果之间的关联。此外,我们使用LIME图在个体层面说明了预测模型。此外,我们分析了这三种ML模型的每周性能,发现XGBoost/RF在第4周和第7周之间的准确率约为0.7,在第8周和第9周略有下降至0.6。我们使用ML方法,主要是XGBoost、SHAP图和LIME图,为需要PMV的患者建立了一个可解释的撤机预测ML模型。我们相信这些方法应在很大程度上减轻对人工智能黑箱问题的担忧,并且所提出的模型有待未来研究落地应用。