Suppr超能文献

基于节点-边交互和多尺度约束的功能磁共振成像自然图像重建

Natural Image Reconstruction from fMRI Based on Node-Edge Interaction and Multi-Scale Constraint.

作者信息

Kuang Mei, Zhan Zongyi, Gao Shaobing

机构信息

College of Computer Science, Sichuan University, Chengdu 610065, China.

出版信息

Brain Sci. 2024 Feb 28;14(3):234. doi: 10.3390/brainsci14030234.

Abstract

Reconstructing natural stimulus images using functional magnetic resonance imaging (fMRI) is one of the most challenging problems in brain decoding and is also the crucial component of a brain-computer interface. Previous methods cannot fully exploit the information about interactions among brain regions. In this paper, we propose a natural image reconstruction method based on node-edge interaction and a multi-scale constraint. Inspired by the extensive information interactions in the brain, a novel graph neural network block with node-edge interaction (NEI-GNN block) is presented, which can adequately model the information exchange between brain areas via alternatively updating the nodes and edges. Additionally, to enhance the quality of reconstructed images in terms of both global structure and local detail, we employ a multi-stage reconstruction network that restricts the reconstructed images in a coarse-to-fine manner across multiple scales. Qualitative experiments on the generic object decoding (GOD) dataset demonstrate that the reconstructed images contain accurate structural information and rich texture details. Furthermore, the proposed method surpasses the existing state-of-the-art methods in terms of accuracy in the commonly used n-way evaluation. Our approach achieves 82.00%, 59.40%, 45.20% in n-way mean squared error (MSE) evaluation and 83.50%, 61.80%, 46.00% in n-way structural similarity index measure (SSIM) evaluation, respectively. Our experiments reveal the importance of information interaction among brain areas and also demonstrate the potential for developing visual-decoding brain-computer interfaces.

摘要

利用功能磁共振成像(fMRI)重建自然刺激图像是脑解码中最具挑战性的问题之一,也是脑机接口的关键组成部分。以往的方法无法充分利用有关脑区之间相互作用的信息。在本文中,我们提出了一种基于节点 - 边相互作用和多尺度约束的自然图像重建方法。受大脑中广泛信息交互的启发,提出了一种具有节点 - 边相互作用的新型图神经网络模块(NEI - GNN模块),它可以通过交替更新节点和边来充分模拟脑区之间的信息交换。此外,为了在全局结构和局部细节方面提高重建图像的质量,我们采用了一个多阶段重建网络,该网络以粗到细的方式在多个尺度上对重建图像进行约束。在通用物体解码(GOD)数据集上的定性实验表明,重建图像包含准确的结构信息和丰富的纹理细节。此外,在常用的n路评估中,所提出的方法在准确性方面超过了现有的最先进方法。我们的方法在n路均方误差(MSE)评估中分别达到了82.00%、59.40%、45.20%,在n路结构相似性指数测量(SSIM)评估中分别达到了83.50%、61.80%、46.00%。我们的实验揭示了脑区之间信息交互的重要性,也展示了开发视觉解码脑机接口的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b2e/10968908/d073ea65a721/brainsci-14-00234-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验