Suppr超能文献

一种用于建模静息态功能磁共振成像数据时空动力学的深度图神经网络架构。

A deep graph neural network architecture for modelling spatio-temporal dynamics in resting-state functional MRI data.

机构信息

Department of Computer Science, University of Cambridge, UK.

Department of Computer Science, University of Cambridge, UK.

出版信息

Med Image Anal. 2022 Jul;79:102471. doi: 10.1016/j.media.2022.102471. Epub 2022 May 7.

Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) has been successfully employed to understand the organisation of the human brain. Typically, the brain is parcellated into regions of interest (ROIs) and modelled as a graph where each ROI represents a node and association measures between ROI-specific blood-oxygen-level-dependent (BOLD) time series are edges. Recently, graph neural networks (GNNs) have seen a surge in popularity due to their success in modelling unstructured relational data. The latest developments with GNNs, however, have not yet been fully exploited for the analysis of rs-fMRI data, particularly with regards to its spatio-temporal dynamics. In this paper, we present a novel deep neural network architecture which combines both GNNs and temporal convolutional networks (TCNs) in order to learn from both the spatial and temporal components of rs-fMRI data in an end-to-end fashion. In particular, this corresponds to intra-feature learning (i.e., learning temporal dynamics with TCNs) as well as inter-feature learning (i.e., leveraging interactions between ROI-wise dynamics with GNNs). We evaluate our model with an ablation study using 35,159 samples from the UK Biobank rs-fMRI database, as well as in the smaller Human Connectome Project (HCP) dataset, both in a unimodal and in a multimodal fashion. We also demonstrate that out architecture contains explainability-related features which easily map to realistic neurobiological insights. We suggest that this model could lay the groundwork for future deep learning architectures focused on leveraging the inherently and inextricably spatio-temporal nature of rs-fMRI data.

摘要

静息态功能磁共振成像 (rs-fMRI) 已成功用于了解人脑的组织。通常,大脑被分割成感兴趣区域 (ROI),并建模为一个图,其中每个 ROI 代表一个节点,ROI 特异性血氧水平依赖 (BOLD) 时间序列之间的关联度量为边。最近,由于在对非结构化关系数据进行建模方面的成功,图神经网络 (GNN) 变得非常流行。然而,GNN 的最新发展尚未在 rs-fMRI 数据分析中得到充分利用,特别是在其时空动态方面。在本文中,我们提出了一种新颖的深度神经网络架构,该架构结合了 GNN 和时间卷积网络 (TCN),以便以端到端的方式从 rs-fMRI 数据的空间和时间成分中进行学习。特别是,这对应于特征内学习(即使用 TCN 学习时间动态)和特征间学习(即利用 ROI 之间的动态交互作用与 GNN)。我们使用来自英国生物银行 rs-fMRI 数据库的 35159 个样本以及更小的人类连接组计划 (HCP) 数据集进行消融研究来评估我们的模型,在单模态和多模态方式下都进行了评估。我们还证明了我们的架构包含可解释性相关的特征,这些特征很容易映射到现实的神经生物学见解。我们认为,这种模型可以为未来专注于利用 rs-fMRI 数据固有且不可分割的时空性质的深度学习架构奠定基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验