Suppr超能文献

全脑概率生成模型:为发展中的机器人实现认知架构。

A whole brain probabilistic generative model: Toward realizing cognitive architectures for developmental robots.

机构信息

Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Japan.

The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan; The Whole Brain Architecture Initiative, 2-19-21 Nishikoiwa , Edogawa-ku, Tokyo, Japan; RIKEN, 6-2-3 Furuedai, Suita, Osaka, Japan.

出版信息

Neural Netw. 2022 Jun;150:293-312. doi: 10.1016/j.neunet.2022.02.026. Epub 2022 Mar 9.

Abstract

Building a human-like integrative artificial cognitive system, that is, an artificial general intelligence (AGI), is the holy grail of the artificial intelligence (AI) field. Furthermore, a computational model that enables an artificial system to achieve cognitive development will be an excellent reference for brain and cognitive science. This paper describes an approach to develop a cognitive architecture by integrating elemental cognitive modules to enable the training of the modules as a whole. This approach is based on two ideas: (1) brain-inspired AI, learning human brain architecture to build human-level intelligence, and (2) a probabilistic generative model (PGM)-based cognitive architecture to develop a cognitive system for developmental robots by integrating PGMs. The proposed development framework is called a whole brain PGM (WB-PGM), which differs fundamentally from existing cognitive architectures in that it can learn continuously through a system based on sensory-motor information. In this paper, we describe the rationale for WB-PGM, the current status of PGM-based elemental cognitive modules, their relationship with the human brain, the approach to the integration of the cognitive modules, and future challenges. Our findings can serve as a reference for brain studies. As PGMs describe explicit informational relationships between variables, WB-PGM provides interpretable guidance from computational sciences to brain science. By providing such information, researchers in neuroscience can provide feedback to researchers in AI and robotics on what the current models lack with reference to the brain. Further, it can facilitate collaboration among researchers in neuro-cognitive sciences as well as AI and robotics.

摘要

构建类人集成人工智能系统,即通用人工智能 (AGI),是人工智能领域的圣杯。此外,一种能够使人工智能系统实现认知发展的计算模型将成为脑与认知科学的优秀参考。本文介绍了一种通过集成基本认知模块来开发认知架构的方法,从而实现对模块的整体训练。该方法基于两个理念:(1) 受大脑启发的人工智能,学习人类大脑架构以构建人类水平的智能,以及 (2) 基于概率生成模型 (PGM) 的认知架构,通过整合 PGM 为发展中的机器人开发认知系统。所提出的开发框架称为全脑 PGM(WB-PGM),它与现有认知架构有根本的不同,因为它可以通过基于感觉运动信息的系统进行持续学习。在本文中,我们描述了 WB-PGM 的基本原理、基于 PGM 的基本认知模块的现状、它们与人类大脑的关系、认知模块的集成方法以及未来的挑战。我们的发现可以为脑科学研究提供参考。由于 PGM 描述了变量之间明确的信息关系,因此 WB-PGM 为脑科学提供了来自计算科学的可解释指导。通过提供这些信息,神经科学研究人员可以就当前模型相对于大脑的不足之处向人工智能和机器人研究人员提供反馈。此外,它还可以促进神经认知科学以及人工智能和机器人领域的研究人员之间的合作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验