Suppr超能文献

受海马体结构启发的全局自我定位:从以自我为中心的视角快速解决机器人被劫持问题。

Hippocampal formation-inspired global self-localization: quick recovery from the kidnapped robot problem from an egocentric perspective.

作者信息

Nakashima Takeshi, Otake Shunsuke, Taniguchi Akira, Maeyama Katsuyoshi, El Hafi Lotfi, Taniguchi Tadahiro, Yamakawa Hiroshi

机构信息

Graduate School of Information Science and Engineering, Ritsumeikan University, Osaka, Japan.

Graduate School of Information Science and Technology, Osaka University, Osaka, Japan.

出版信息

Front Comput Neurosci. 2024 Jul 18;18:1398851. doi: 10.3389/fncom.2024.1398851. eCollection 2024.

Abstract

It remains difficult for mobile robots to continue accurate self-localization when they are suddenly teleported to a location that is different from their beliefs during navigation. Incorporating insights from neuroscience into developing a spatial cognition model for mobile robots may make it possible to acquire the ability to respond appropriately to changing situations, similar to living organisms. Recent neuroscience research has shown that during teleportation in rat navigation, neural populations of place cells in the cornu ammonis-3 region of the hippocampus, which are sparse representations of each other, switch discretely. In this study, we construct a spatial cognition model using brain reference architecture-driven development, a method for developing brain-inspired software that is functionally and structurally consistent with the brain. The spatial cognition model was realized by integrating the recurrent state-space model, a world model, with Monte Carlo localization to infer allocentric self-positions within the framework of neuro-symbol emergence in the robotics toolkit. The spatial cognition model, which models the cornu ammonis-1 and -3 regions with each latent variable, demonstrated improved self-localization performance of mobile robots during teleportation in a simulation environment. Moreover, it was confirmed that sparse neural activity could be obtained for the latent variables corresponding to cornu ammonis-3. These results suggest that spatial cognition models incorporating neuroscience insights can contribute to improving the self-localization technology for mobile robots. The project website is https://nakashimatakeshi.github.io/HF-IGL/.

摘要

当移动机器人突然被传送到一个与它们在导航过程中的认知不同的位置时,它们很难继续进行精确的自我定位。将神经科学的见解纳入移动机器人空间认知模型的开发中,可能会使其具备像生物体一样对变化情况做出适当反应的能力。最近的神经科学研究表明,在大鼠导航的传送过程中,海马体角回-3区域中位置细胞的神经群体(它们彼此之间是稀疏表示)会离散地切换。在本研究中,我们使用大脑参考架构驱动的开发方法构建了一个空间认知模型,这是一种开发在功能和结构上与大脑一致的受大脑启发的软件的方法。空间认知模型是通过将循环状态空间模型(一种世界模型)与蒙特卡洛定位相结合来实现的,以便在机器人工具包中的神经符号出现框架内推断以自我为中心的自身位置。该空间认知模型用每个潜在变量对海马体角回-1和-3区域进行建模,在模拟环境中展示了移动机器人在传送过程中自我定位性能的提升。此外,还证实了可以为与海马体角回-3对应的潜在变量获得稀疏神经活动。这些结果表明,纳入神经科学见解的空间认知模型有助于改进移动机器人的自我定位技术。项目网站是https://nakashimatakeshi.github.io/HF-IGL/。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f6/11291353/bd65ac0ce967/fncom-18-1398851-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验