Suppr超能文献

深度学习在缺血性和出血性脑卒中计算机断层扫描和磁共振成像中的应用。

Application of Deep Learning to Ischemic and Hemorrhagic Stroke Computed Tomography and Magnetic Resonance Imaging.

机构信息

Department of Radiology, Neuroradiology Section, Stanford University School of Medicine, Stanford, CA.

Department of Neurology, Xuan Wu hospital, Capital Meidcal University, Beijing, China.

出版信息

Semin Ultrasound CT MR. 2022 Apr;43(2):147-152. doi: 10.1053/j.sult.2022.02.004. Epub 2022 Feb 11.

Abstract

Deep Learning (DL) algorithm holds great potential in the field of stroke imaging. It has been applied not only to the "downstream" side such as lesion detection, treatment decision making, and outcome prediction, but also to the "upstream" side for generation and enhancement of stroke imaging. This paper aims to comprehensively overview the common applications of DL to stroke imaging. In the future, more standardized imaging datasets and more extensive studies are needed to establish and validate the role of DL in stroke imaging.

摘要

深度学习(DL)算法在中风影像领域具有巨大的潜力。它不仅应用于“下游”方面,如病灶检测、治疗决策和预后预测,也应用于“上游”方面,如中风影像的生成和增强。本文旨在全面综述 DL 在中风影像中的常见应用。未来需要更多标准化的影像数据集和更广泛的研究来建立和验证 DL 在中风影像中的作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验