Felehgari Sahar, Sariaslani Payam, Shamsizadeh Sepideh, Felehgari Saba, Rajabi Anahita, Mohammadi Hiwa
Neuroscience Research Center, Health Policy and Promotion Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran.
J Med Signals Sens. 2025 Apr 19;15:10. doi: 10.4103/jmss.jmss_37_24. eCollection 2025.
Clinical decisions for stroke treatments, such as thrombolytic drugs for ischemic strokes or anticoagulants for hemorrhagic strokes, rely on accurate diagnosis and severity assessment. Our study uses diffusion-weighted magnetic resonance imaging and Convolutional Neural Networks (CNNs) to differentiate healthy and stroke samples, classify stroke types, and predict severity, aiding in decision-making for stroke management.
We evaluated 143 patients: 85 with ischemic stroke and 58 with hemorrhagic stroke. For stroke diagnosis, we compared multimodal (apparent diffusion coefficient and diffusion-weighted imaging [DWI]) and single-modal (using separate images) preprocessing techniques. Our study introduced two models, Added CNN Layer-ResNet-50 (ACL-ResNet-50) and Added CNN Layer-MobileNetV1 (ACL-MobileNetV1), based on transfer learning (MobileNetV1 and ResNet-50), enhancing performance through reinforced layers. We compared our proposed models with a scenario in which only the final layer was replaced in ResNet-50 and MobileNetV1. Furthermore, we predicted National Institutes of Health Stroke Scale (NIHSS) scores in three ranges based on DWI images to gauge stroke severity. Evaluation criteria for the models included accuracy, sensitivity, specificity, and area under the curve (AUC).
In stroke classification (normal, ischemic, and hemorrhagic), ACL-MobileNetV1 outperformed other models, achieving 98% accuracy, 99% sensitivity, 98% specificity, and 99% AUC. For assessing ischemic stroke severity using NIHSS ranges, ACL-ResNet-50 showed the optimal performance with an accuracy of 0.92, sensitivity of 0.84, specificity of 0.92, and AUC of 0.95.
Our study's proposed method effectively classified stroke type and severity based on multimodal MR images, potentially as a practical decision support tool for stroke treatments.
中风治疗的临床决策,如缺血性中风的溶栓药物或出血性中风的抗凝剂,依赖于准确的诊断和严重程度评估。我们的研究使用扩散加权磁共振成像和卷积神经网络(CNN)来区分健康样本和中风样本,对中风类型进行分类,并预测严重程度,以辅助中风管理的决策。
我们评估了143名患者:85名缺血性中风患者和58名出血性中风患者。对于中风诊断,我们比较了多模态(表观扩散系数和扩散加权成像 [DWI])和单模态(使用单独图像)预处理技术。我们的研究基于迁移学习(MobileNetV1和ResNet-50)引入了两个模型,即添加卷积神经网络层的ResNet-50(ACL-ResNet-50)和添加卷积神经网络层的MobileNetV1(ACL-MobileNetV1),通过强化层提高性能。我们将我们提出的模型与仅替换ResNet-50和MobileNetV1最后一层的情况进行了比较。此外,我们根据DWI图像预测了三个范围内的美国国立卫生研究院卒中量表(NIHSS)评分,以评估中风严重程度。模型的评估标准包括准确性、敏感性、特异性和曲线下面积(AUC)。
在中风分类(正常、缺血性和出血性)中,ACL-MobileNetV1优于其他模型,准确率达到98%,敏感性为99%,特异性为98%,AUC为99%。对于使用NIHSS范围评估缺血性中风严重程度,ACL-ResNet-50表现出最佳性能,准确率为0.92,敏感性为0.84,特异性为0.92,AUC为0.95。
我们研究提出的方法基于多模态磁共振图像有效地对中风类型和严重程度进行了分类,有可能成为中风治疗的实用决策支持工具。